

HyperMorph 10.0

Altair Proprietary and Confidential Information

- Introduction to the Morphing
 - What is Morphing
 - Mesh morphing module in HyperMesh.
 - Allows you to morph an FE model in useful, logical, and intuitive ways which result in minimal element distortion.
 - Why use Morphing
 - Only nodal location is chanced . Node id, element id and any association such as contact groups remain unchanged. Allowing you to modify original mesh to meet new mesh design.
 - Where can I find Morphing module
 - The Morphing module is in HyperMesh -> Tool page -> HyperMoprh panel

- How does Morphing works
 - Mesh Model is divided into domains
 - Handles are placed at domain boundaries
 - Domain shape is controlled by attached handles
 - Handle movements change domain shapes, which in turn move nodes within domains
 - Global handles affect entire model
 - Local handles only affect parent and neighboring domains
 - Map to geometry

- What are Morphing applications
 - Rapidly change shape of existing model
 - Improve element quality by dragging handles or mapping edge domains
 - Fit old model to new design data
 - Map an existing mesh onto lines or surfaces
 - Generate NURB surfaces using FE -> Surf feature in HyperMesh
 - Generate and edit shape variables for optimization

Application A: Easily alter the diameter of holes for solid models

• Application B: Rapidly stretch the full vehicle body

Proprietary Information of Altair Engineering, Inc.

• Application C: map to geometry

Altair Proprietary and Confidential Information

• Tools for Morphing

numbers	O Geom
renumber	O 1D
count	C 2D
mass calc	C 3D
tags	o Analysis
HyperMorph	Tool
	C Post
	count mass calc taqs

HyperMorph		include	comp:		
morph constraints	morph volumes	morph	morph options		
systems domains		map to geom			
symmetry	handles	freehand			
shapes					

🕸 HyperMesh – OptiStruct hw8.0SR1																
File	Edit	View	Organize	Geometry	Mesh	BCs	Setup	Checks	Tools	Optimiz	zation	Applications	Results	Prefe	rences	Help
м	odel	Utility		× 🛛					Нуре	rMorph		🕨 Нуреі	Morph	_		
	,								<u>I</u> rans <u>B</u> otat <u>S</u> cale	te e	Shift + F	4 Morph Doma <u>H</u> and				
									Refle Projec Positi Perm	ct o <u>n</u>	Shift + F	7 <u>M</u> orph Map t <u>F</u> reeh	o <u>G</u> eometry			
									 	ert			Morph <u>C</u> onstraints Coordinate Systems			
Co	nvert	ers:							S <u>e</u> t M	lanager		Symm Shap	etry			
	I-[o OptiStri t in MDI	uct								Morph	Options			

- Tools for Morphing
 - Morph constraints: Create/update/release constraints to morph a CAE model.
 - Systems: Create, edit and update system
 - Symmetry: Create, edit and update symmetry. Update domains/handles to symmetry
 - Shapes: Create/apply/autoshape/convert shape into loads/save shape/apply the saved shape to another model.
 - Morph Volume: Create/edit & update/save & export-import/convert HEXA into morph volume
 - **Domains:** Create/edit/update domains and setup parameters
 - Handles: Create/edit/update handles and dependency or save-to load-from a file
 - Morph: morph the model and create shape entities.
 - Map to geom: map domains and handles to geometric data.
 - Freehand: Easy way of morphing. Good for quick change and bead creation.

- Agenda :
 - Introduction to HyperMorph terminology
 - HyperMorph features
 - Morphing process
 - Strategy and examples

Altair Proprietary and Confidential Information

- **Domain**: entity comprises elements and nodes as a part of morphing process.
- Global domain : a single domain which can influence every node in the model.
- Local domains : include1D domain, 2D domain, 3D domain and edge domain. A model can have multiple local domains for morphing different local areas.

Domain type	Content	Symbol in HM
1D domains	Contain a group of 1D elements such as bars and rigid elements.	
2D domains	Contain a group of shell elements	Β
3D domains	Contain a group of solid elements.	⊛
edge domains	Contain a series of nodes and are commonly found along the edges of 2D and 3D domains.	Red lines around the edges of all 2D domains
global domain	Consists of the entire model.	415. 416.200 1.600 1.600

- Handle: accompany each domain and provide the mechanism to modify shape of a mesh
- Handle influence : describe how a movement of a handle relate to nodal movements.
- Global handle : only exist in global domain. Movement of a global handle can affect every node within a model. It allows a large scale shape change.
- Local handle : only exist in local domains. Any local handle can only influence nodes contained in the local domains they are associated with. It is used for local shape changes.
- Global morphing : morphing using global domains and global handles.
- Local morphing : morphing using local domains and local handles.

- Curve tolerance : a parameter used to decide if a mesh geometric feature is straight or curve. Similar to domain angle, a partition is performed when the value is exceeded.
- **Partition**: a HyperMorph term to logically divides a 2D domain into smaller 2D domains based on the values of domain angle and curve tolerance.

Altair Proprietary and Confidential Information

Copyright © 2008 Altair Engineering, Inc. All rights reserved.

HyperWorks

• **^morphface** : 2D elements on the faces of each 3D domain and placed into a ^morphface component. Any morphing operation on those face elements within ^morphface influences underneath solid elements. Essentially, to morph solid elements is to morph elements within ^morphface.

HyperWorks

- **Dependency**: a HyperMorph feature which can be used to build relationships among handles. Multiple layers of dependency is supported.
- Independent handle : the handle is only morphed by its own movement and independent from other handle movement.
- **Dependent handle** : the handle is affected by the movement of its associated independent handle.

No dependency

Altair Proprietary and Confidential Information

• Symmetry : a HyperMoprh entity allows users to link handles in a symmetric fashion The movements of one handle will be reflected and applied to the symmetric handles.

Cyclical symmetry

Altair Proprietary and Confidential Information

• **Constraints** : a HyperMorph feature to restrict the movement of nodes during morphing operations.

HyperWorks

Altair Proprietary and Confidential Information

Copyright © 2008 Altair Engineering, Inc. All rights reserved.

Introduction to HyperMorph terminology

• **Biasing** : a HyperMoprh feature to modify the influence of a handle over the nearby nodes. A biasing factor can be assigned to a handle. Higher bias value increase the influence of a handle over nodes. Lower bias value decrease the influence. The default value of each handle is 1.0 with linear influence.

• Shape: a HyperMoprh entity records the difference between the initial state of the model and the current state of the model. It can be used for storing, re-applying and combining multiple mesh changes. It can also be linked to optimization code to perform shape optimization.

HyperWorks

Altair Proprietary and Confidential Information

Altair Proprietary and Confidential Information

HyperMorph features

- Perform morphing operation by move handles
 - Morph interactively by dragging handles across graphics area

Translate a handle to a coordinate

Altair Proprietary and Confidential Information

alter dimension (curvature)

HyperMorph features

alter dimension (angle)

Perform morphing operation by alter dimension

<--D + d→ **--**-D--a a b b alter dimension (radius)

• Perform morphing operation by VolumeMorph

After

Altair Proprietary and Confidential Information

• Perform morphing operation by Bead insertion with Freehand

• Perform morphing operation with 1d elements and dependency

• Map to geometry

Altair Proprietary and Confidential Information

HyperMorph features

Perform morphing with symmetry

• AutoShape

Morph handle according to element normal or vector Generate shape variables for optimization Store or combine multiple shapes

Altair Proprietary and Confidential Information

Copyright © 2008 Altair Engineering, Inc. All rights reserved.

• Morph surface

Altair Proprietary and Confidential Information

Morphing process

Altair Proprietary and Confidential Information

Morphing process

- Outline of the process
 - Step 1 Load a mesh model
 - Step 2 setup parameters

If apply global morphing : If you wish to preserve the local geometry, the hierarchical method should be selected. If you wish to do a large scale change with a tolerance to bend and distort the local geometry, choose the direct method.

* Global Domains and Handles

If apply local morphing : 1d domains 2d domains 3d domains Edge domains

Morphing process

• Step 3 – create domains and handles

- autogenerate : automatically create all domains and handles. Good for simple geometry.
- **individual partitions**: select only local areas for partitioning. Usually generate fewer domains and handles. Recommended for experienced users.

Step 4(optional) – refine partition

To re-create, edit, merge, or delete domains and handles. Using different parameters to repartitioning domains to be able to build desired handles and domains.

- Step 5 Morph
- Move handles : move handles to morph a mesh.
- Alter dimension : select a dimension to change its value. This allows a precise modification of a dimension
- Map to geom : map nodes or domain to existing geometry
- Freehand: Easy way of morphing. Good for quick change and bead creation.

HyperMorph		include:	comp:
morph constraints	morph volumes	morph	morph options
systems	domains	map to geom	
symmetry	handles	freehand	
shapes			J
	·		

 Step 6(optional) – impose additional features to improve morphed mesh quality

Add biasing, handles dependency, constraint, extra handles, symmetry or reference geometry for mapping

 Step 6(optional) – impose additional features to improve morphed mesh quality

Auto quality check

off	2D length	3D warpage	
1 D length	2D jacobian	3D aspect ratio	
2D warpage	2D chord dev	3D tet aspect	\vdash
2D skew	2D quad angle	3D skew	H
2D aspect	2D tria angle	3D vol skew	\mathbb{P}^{2}

 Step 6(optional) – impose additional features to improve morphed mesh quality

HyperMorph		include	comp:
morph constraints	morph volumes	morph	morph options
systems	domains	map to geom	
symmetry	nandies	freehand	
shapes	J		
Domains		includ	e: comp
C create	▼ reme	sh 2D	
© organize	domains		new mesh type:
e edit edges			▼ 🔲 quads
💿 update 🔵			
O parameters			🔽 size control
 partitioning 			🔽 skew control
			🔽 preserve shapes

romach 2D	ranaramatariza
remesh 2D	reparameterize
smooth mesh	partition
subdivide 3D	delete all
update 1D method	

• Step 7(optional) - Export a solver file

HyperMorph supports any solver which is supported by HyperMesh. HyperMorph entities will not get exported into a solver deck. (Altair Optistruct is exceptional)

- Step 8 save morphed mesh as shape entities
 - Storing different mesh-shape changes in one model
 - Re-applying a shape change to the mesh at a later stage
 - Combining multiple shape changes simultaneously
 - Recovering the original model
 - Completing analysis, optimization, or parametric studies using OptiStruct or HyperStudy

• Step 9 – Undo morph

Use undo or undo all to get back the original mesh before saving.

C move handles	shape =	save
C alter dimensions		
C set biasing	as handle perturbations	undo
C set constraints		redo
💿 save as shape		undo all
C apply shapes		reduelt
C morph surfaces		return

• Step 10 - Save as a HyperMesh binary data file (*.hm)

Altair Proprietary and Confidential Information

Altair Proprietary and Confidential Information

• Raise the roof

Create global domain Create 1 plane symmetry Create global handles Constraint fixed nodes on target mesh

Morph handles to new positions

- 1. Change B pillar
- 2. Change vehicle back shape
- 3. Change front occupancy

Altair Proprietary and Confidential Information

Proprietary Information of Altair © 2008 Altair Engineering, Inc. All rights reserved.

Altair Proprietary and Confidential Information

Proprietary Information of Altair

Altair Proprietary and Confidential Information

Altair Proprietary and Confidential Information

• Dummy de-penetration :Combine morphing with geometry cleanup and map to surface

Altair Proprietary and Confidential Information

Copyright © 2008 Altair Engineering, Inc. All rights reserved.

Altair HyperWorks

Optimization

Altair Proprietary and Confidential Information

Optimization

• Optimization – general approach

Copyright © 2008 Altair Engineering, Inc. All rights reserved.

Optimization

- Optimization : using Altair Optistruct with HyperMorph
 - Shape Optimization
 - Fine tune designs
 - Find true dimensions
 - Reduce stresses
 - Control geometry for manufacturability
 - Easy to use: HyperMorph

Optimization

• Optimization - using Altair HyperStudy with HyperMoprh

Altair Proprietary and Confidential Information

Optimization – comparison result

Altair Proprietary and Confidential Information

Thank you

Altair Proprietary and Confidential Information