HyperMorph 10.0
Introduction to the Morphing

- What is Morphing
 - Mesh morphing module in HyperMesh.
 - Allows you to morph an FE model in useful, logical, and intuitive ways which result in minimal element distortion.

- Why use Morphing
 - Only nodal location is changed. Node id, element id and any association such as contact groups remain unchanged. Allowing you to modify original mesh to meet new mesh design.

- Where can I find Morphing module
 - The Morphing module is in HyperMesh -> Tool page -> HyperMorph panel
Morphing

- How does Morphing works
 - Mesh Model is divided into domains
 - Handles are placed at domain boundaries
 - Domain shape is controlled by attached handles
 - Handle movements change domain shapes, which in turn move nodes within domains
 - Global handles affect entire model
 - Local handles only affect parent and neighboring domains
 - Map to geometry
Morphing

• What are Morphing applications
 - Rapidly change shape of existing model
 - Improve element quality by dragging handles or mapping edge domains
 - Fit old model to new design data
 - Map an existing mesh onto lines or surfaces
 - Generate NURB surfaces using FE → Surf feature in HyperMesh
 - Generate and edit shape variables for optimization

Application A: Easily alter the diameter of holes for solid models
Morphing

- Application B: Rapidly stretch the full vehicle body
Morphing

- Application C: map to geometry
Morphing

- Tools for Morphing

<table>
<thead>
<tr>
<th>numbers</th>
<th>Geom</th>
</tr>
</thead>
<tbody>
<tr>
<td>renumber</td>
<td>1D</td>
</tr>
<tr>
<td>count</td>
<td>2D</td>
</tr>
<tr>
<td>mass calc</td>
<td>3D</td>
</tr>
<tr>
<td>tags</td>
<td>Analysis</td>
</tr>
<tr>
<td>HyperMorph</td>
<td>Tool</td>
</tr>
<tr>
<td>Post</td>
<td></td>
</tr>
</tbody>
</table>

- HyperMorph

<table>
<thead>
<tr>
<th>morph constraints</th>
<th>morph volumes</th>
<th>morph options</th>
</tr>
</thead>
<tbody>
<tr>
<td>systems</td>
<td>domains</td>
<td>map to geom</td>
</tr>
<tr>
<td>symmetry</td>
<td>handles</td>
<td>freehand</td>
</tr>
<tr>
<td>shapes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Altair HyperMesh - OptiStruct hw8.0SR1

- HyperMorph

<table>
<thead>
<tr>
<th>HyperMorph Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Morph Volumes</td>
</tr>
<tr>
<td>Domains</td>
</tr>
<tr>
<td>Handles</td>
</tr>
<tr>
<td>Map to Geometry</td>
</tr>
<tr>
<td>Freehand</td>
</tr>
<tr>
<td>Morph Constraints</td>
</tr>
<tr>
<td>Coordinate Systems</td>
</tr>
<tr>
<td>Symmetry</td>
</tr>
<tr>
<td>Shapes</td>
</tr>
<tr>
<td>Morph Options</td>
</tr>
</tbody>
</table>
Morphing

• Tools for Morphing

- **Morph constraints**: Create/update/release constraints to morph a CAE model.
- **Systems**: Create, edit and update system
- **Symmetry**: Create, edit and update symmetry. Update domains/handles to symmetry
- **Shapes**: Create/apply/autoshape/convert shape into loads/save shape/apply the saved shape to another model.
- **Morph Volume**: Create/edit & update/save & export–import/convert HEXA into morph volume
- **Domains**: Create/edit/update domains and setup parameters
- **Handles**: Create/edit/update handles and dependency or save–to load–from a file
- **Morph**: morph the model and create shape entities.
- **Map to geom**: map domains and handles to geometric data.
- **Freehand**: Easy way of morphing. Good for quick change and bead creation.
Morphing

• Agenda:
 - Introduction to HyperMorph terminology
 - HyperMorph features
 - Morphing process
 - Strategy and examples
Introduction to HyperMorph terminology
Introduction to HyperMorph terminology

- What does HyperMorph look like?
Introduction to HyperMorph terminology

- **Domain**: entity comprises elements and nodes as a part of morphing process.
- **Global domain**: a single domain which can influence every node in the model.
- **Local domains**: include 1D domain, 2D domain, 3D domain and edge domain. A model can have multiple local domains for morphing different local areas.
Introduction to HyperMorph terminology

<table>
<thead>
<tr>
<th>Domain type</th>
<th>Content</th>
<th>Symbol in HM</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D domains</td>
<td>Contain a group of 1D elements such as bars and rigid elements.</td>
<td>![1D symbol]</td>
</tr>
<tr>
<td>2D domains</td>
<td>Contain a group of shell elements</td>
<td>![2D symbol]</td>
</tr>
<tr>
<td>3D domains</td>
<td>Contain a group of solid elements.</td>
<td>![3D symbol]</td>
</tr>
<tr>
<td>edge domains</td>
<td>Contain a series of nodes and are commonly found along the edges of 2D and 3D domains.</td>
<td>Red lines around the edges of all 2D domains</td>
</tr>
<tr>
<td>global domain</td>
<td>Consists of the entire model.</td>
<td>![Global symbol]</td>
</tr>
</tbody>
</table>
Introduction to HyperMorph terminology

- **Handle**: accompany each domain and provide the mechanism to modify shape of a mesh.
- **Handle influence**: describe how a movement of a handle relate to nodal movements.
- **Global handle**: only exist in global domain. Movement of a global handle can affect every node within a model. It allows a large scale shape change.
- **Local handle**: only exist in local domains. Any local handle can only influence nodes contained in the local domains they are associated with. It is used for local shape changes.
- **Global morphing**: morphing using global domains and global handles.
- **Local morphing**: morphing using local domains and local handles.
Introduction to HyperMorph terminology

- **Domain angle**: the angle between the normal vectors between two elements. When the value is exceeded, a partition break is confirmed and a new domain will be created with an edge running between the two elements.

- **Curve tolerance**: a parameter used to decide if a mesh geometric feature is straight or curve. Similar to domain angle, a partition is performed when the value is exceeded.

- **Partition**: a HyperMorph term to logically divides a 2D domain into smaller 2D domains based on the values of domain angle and curve tolerance.
Introduction to HyperMorph terminology

• ^morphface: 2D elements on the faces of each 3D domain and placed into a ^morphface component. Any morphing operation on those face elements within ^morphface influences underneath solid elements. Essentially, to morph solid elements is to morph elements within ^morphface.
- **Dependency**: a HyperMorph feature which can be used to build relationships among handles. Multiple layers of dependency is supported.

- **Independent handle**: the handle is only morphed by its own movement and independent from other handle movement.

- **Dependent handle**: the handle is affected by the movement of its associated independent handle.
Introduction to HyperMorph terminology

No dependency
Introduction to HyperMorph terminology

- **Symmetry**: A HyperMorph entity allows users to link handles in a symmetric fashion. The movements of one handle will be reflected and applied to the symmetric handles.
Introduction to HyperMorph terminology

- **Constraints**: a HyperMorph feature to restrict the movement of nodes during morphing operations.
• **Biasing**: a HyperMorph feature to modify the influence of a handle over the nearby nodes. A biasing factor can be assigned to a handle. Higher bias value increases the influence of a handle over nodes. Lower bias value decreases the influence. The default value of each handle is 1.0 with linear influence.
Introduction to HyperMorph terminology

- **Shape**: a HyperMorph entity records the difference between the initial state of the model and the current state of the model. It can be used for storing, re-applying and combining multiple mesh changes. It can also be linked to optimization code to perform shape optimization.

<table>
<thead>
<tr>
<th>Morph</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>move handles</td>
<td></td>
</tr>
<tr>
<td>alter dimensions</td>
<td></td>
</tr>
<tr>
<td>set biasing</td>
<td></td>
</tr>
<tr>
<td>set constraints</td>
<td></td>
</tr>
<tr>
<td>save as shape</td>
<td></td>
</tr>
<tr>
<td>apply shapes</td>
<td></td>
</tr>
<tr>
<td>morph surfaces</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Morph: Apply shapes</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>move handles</td>
<td></td>
</tr>
<tr>
<td>alter dimensions</td>
<td></td>
</tr>
<tr>
<td>set biasing</td>
<td></td>
</tr>
<tr>
<td>set constraints</td>
<td></td>
</tr>
<tr>
<td>save as shape</td>
<td></td>
</tr>
<tr>
<td>apply shapes</td>
<td></td>
</tr>
<tr>
<td>morph surfaces</td>
<td></td>
</tr>
</tbody>
</table>

```
Morph
- move handles
- alter dimensions
- set biasing
- set constraints
- **save as shape**
- apply shapes
- morph surfaces

Morph: Apply shapes
- move handles
- alter dimensions
- set biasing
- set constraints
- **save as shape**
- **apply shapes**
- morph surfaces

```
HyperMorph Features
HyperMorph features

- Perform morphing operation by move handles

Morph interactively by dragging handles across graphics area

Rotate a mesh

Translate a handle to a node

Translate a handle to a coordinate
HyperMorph features

- Perform morphing operation by alter dimension

- Alter dimension (angle)

- Alter dimension (distance)

- Alter dimension (radius)

- Alter dimension (curvature)
HyperMorph features

- Perform morphing operation by VolumeMorph

Before

After
HyperMorph features

- Perform morphing operation by Bead insertion with Freehand

Before

After
HyperMorph features

- Perform morphing operation with 1d elements and dependency
HyperMorph features

- Map to geometry
- Map to line
- Map to surface
- Map to surface edge
- Map to geometry
- Map to line
- Map to surface
- Map to surface edge

original mesh
surface
morphed mesh
HyperMorph features

- Perform morphing with symmetry

original mesh	 without symmetry	 with symmetry
HyperMorph features

- **AutoShape**

 Morph handle according to element normal or vector
 Generate shape variables for optimization
 Store or combine multiple shapes
HyperMorph features

- Morph surface

Step 1

Step 2

Step 3 – morph surface
Morphing process
Morphing process

• Outline of the process
 - Step 1 – Load a mesh model
 - Step 2 – setup parameters
Morphing process

If apply global morphing: If you wish to preserve the local geometry, the hierarchical method should be selected. If you wish to do a large scale change with a tolerance to bend and distort the local geometry, choose the direct method.

* Global Domains and Handles

If apply local morphing: 1d domains
2d domains
3d domains
Edge domains
Morphing process

- **Step 3 – create domains and handles**
 - **autogenerate**: automatically create all domains and handles. Good for simple geometry.
 - **individual partitions**: select only local areas for partitioning. Usually generate fewer domains and handles. Recommended for experienced users.
Morphing process

- **Step 4 (optional) – refine partition**

 To re-create, edit, merge, or delete domains and handles. Using different parameters to re-partitioning domains to be able to build desired handles and domains.

![Diagram showing morphing process]

- Domain angle = 40.0
- Partition domain = ✔

- Domain angle = 20.0
- Partition domain = ✔

- Domain angle = 20.0
- Partition domain = off

element base method + first order
Morphing process

- **Step 5 – Morph**
- **Move handles**: move handles to morph a mesh.
- **Alter dimension**: select a dimension to change its value. This allows a precise modification of a dimension.
- **Map to geom**: map nodes or domain to existing geometry.
- **Freehand**: Easy way of morphing. Good for quick change and bead creation.

<table>
<thead>
<tr>
<th>HyperMorph</th>
<th>include:</th>
<th>comp:</th>
</tr>
</thead>
<tbody>
<tr>
<td>morph constraints</td>
<td>morph</td>
<td>morph options</td>
</tr>
<tr>
<td>systems</td>
<td>domains</td>
<td></td>
</tr>
<tr>
<td>symmetry</td>
<td>handles</td>
<td></td>
</tr>
<tr>
<td>shapes</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Morphing process

- Step 6 (optional) – impose additional features to improve morphed mesh quality

 Add biasing, handles dependency, constraint, extra handles, symmetry or reference geometry for mapping

Mesh quality is improved
Morphing process

- Step 6 (optional) – impose additional features to improve morphed mesh quality

Auto quality check

<table>
<thead>
<tr>
<th>off</th>
<th>2D length</th>
<th>3D warpage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1D length</td>
<td>2D jacobian</td>
<td>3D aspect ratio</td>
</tr>
<tr>
<td>2D warpage</td>
<td>2D chord dev</td>
<td>3D tet aspect</td>
</tr>
<tr>
<td>2D skew</td>
<td>2D quad angle</td>
<td>3D skew</td>
</tr>
<tr>
<td>2D aspect</td>
<td>2D tria angle</td>
<td>3D vol skew</td>
</tr>
</tbody>
</table>
Morphing process

- Step 6 (optional) – impose additional features to improve morphed mesh quality
Morphing process

- **Step 7 (optional) – Export a solver file**
 HyperMorph supports any solver which is supported by HyperMesh. HyperMorph entities will not get exported into a solver deck. (Altair Optistruct is exceptional)

- **Step 8 – save morphed mesh as shape entities**
 - Storing different mesh–shape changes in one model
 - Re-applying a shape change to the mesh at a later stage
 - Combining multiple shape changes simultaneously
 - Recovering the original model
 - Completing analysis, optimization, or parametric studies using OptiStruct or HyperStudy
Morphing process

- **Step 9 – Undo morph**
 Use `undo` or `undo all` to get back the original mesh before saving.

- **Step 10 – Save as a HyperMesh binary data file (*.hm)**
Morphing process

1. Load a Mesh
2. Set up parameters
3. Create domains & handles
4. Refine partition?
 - yes
 - no
5. Add biasing, dependency, constraint, extra handles, or reference geometry for mapping
6. Morph
7. Need improvement?
 - yes
 - no
8. Export a solver deck
9. re-use model?
 - yes
 - no
10. Save as shapes
11. Save as *.hm
12. Undo morph
Strategy and examples
Strategy and examples

- **Raise the roof**

 - Create global domain
 - Create 1 plane symmetry
 - Create global handles
 - Constraint fixed nodes on target mesh

 Morph handles to new positions
Strategy and examples

1. Change B-piller
2. Change vehicle back shape
3. Change front occupancy
Strategy and examples

- Dummy de-penetration: Combine morphing with geometry cleanup and map to surface

Penetration problem

Map to Geometry

de-penetration

before after
Strategy and examples

Optimization
Optimization

- **Optimization – general approach**

- **Analysis of Design Proposal**

- **HyperMorph creates shape variables (DV)**

- **Shape Optimization**

- **Export of final Geometry from HyperMesh**
Optimization

- Optimization: using Altair Optistruct with HyperMorph
 - Shape Optimization
 - Fine tune designs
 - Find true dimensions
 - Reduce stresses
 - Control geometry for manufacturability
 - Easy to use: HyperMorph
• Optimization – using Altair HyperStudy with HyperMorph

Many solver interfaces such as Abaqus, LS-Dyna, etc. for multi-attribute studies
Optimization – comparison result

initial

optimized
Thank you