MotionSolve와 OptiStruct를 연계한 기어의 응력 해석

장 형 배
한국알테어 사업개발팀
Agenda

1. Introduction
2. Solution Process
3. Case Study
1. Introduction

• Finite Element Analysis
 • Non-linear contact analysis (Finite sliding contact)
 • Weak point: Solving time, Convergence
1. Introduction

- Finite Element Analysis Coupled with Multi-Body Simulation
 - Solving time and convergence improved
 - Realistic system behavior easily considered
2. Solution Process

MBS

Loads Extraction

MD Plugin

Loads Assembly

Results

Digital twin

Design the Difference with Digital twin
2. Solution Process

- MD Plugin (Multi-Disciplinary Plugin for HyperWorks)
2. Solution Process

• MD Plugin: **Who is it for?**

• **MotionView Users**
 - To easily transfer nodes, lines, solids, and meshes from HyperMesh
 - To model compliant joint with friction and backlash
 - To model cam or gear contact with analytical forces
 - To model cable system wrapping

• **HyperWorks Users**
 - To interpolate AcuSolve fluid loads mappings on MotionSolve flexible bodies
 - To apply MotionSolve 3D contact loads or modal loads on OptiStruct models
 - To plot FRFs from MotionSolve linear results
3. Case Study: Rack and Pinion
3. Case Study: Rack and Pinion

Design the Difference with Digital twin
3. Case Study : Rack and Pinion

- [run4fem] Panel : User Inputs

1. Body selection : Up to 5 bodies
2. List output time steps in either format :
 - 0, output time steps
 - 1, begin, end, increment
3. Nodes merging tolerance
4. Nodes searching distance
5. Job submit
3. Case Study: Rack and Pinion

- [run4fem] Panel: Outputs
 - Solver input files: .xml
 - Simulation output files: .h3d, .abf, .mrf, etc.
 - CSV out files: floating loads only
 - FEA solution input files: .fem
 - HyperMesh import script: .tcl
3. Case Study: Rack and Pinion

- Multi-Body Simulation Result
3. Case Study: Rack and Pinion

- Loads Assembly

- Split page with HM for OptiStruct window
- HyperMesh processing steps:
 - Load OptiStruct model
 - Show only desired components
 - Load script files: Model-Rackpin steering-Pinion.tcl
 - Add 1 constraint (123456) at center of lumped load RBE2 in current load collector
 - Show only “TIME HISTORY (D)” load step
 - Submit OptiStruct job from displayed
3. Case Study: Rack and Pinion

- Loads Assembly
3. Case Study: Rack and Pinion

• Result Animation
3. Case Study: Planetary Gear

![Image of a planetary gear system with labeled joints and forces.]
3. Case Study : Planetary Gear

- Multi-Body Simulation Result
3. Case Study: Planetary Gear

- Loads Assembly

![Image of planetary gear simulation with time history data]

<table>
<thead>
<tr>
<th>TIME</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.990</td>
<td>400</td>
</tr>
<tr>
<td>4.000</td>
<td>401</td>
</tr>
<tr>
<td>TIME HISTORY (D)</td>
<td>402</td>
</tr>
<tr>
<td>TIME HISTORY (M)</td>
<td>403</td>
</tr>
</tbody>
</table>
3. Case Study: Planetary Gear

- Result Animation
3. Case Study: Differential

From global system analysis to local component assessment
Thank You!