E-Motor Modeling: from pre-design to Fine Design including NVH Analysis, Thermal Analysis, System Analysis and with Optimisation

Dr Patrick Lombard
Lead Application Specialist - LF- EM Solutions
HyperWorks Core Development
Outline

• Introduction
• System Analysis
• Pre-design
• Fine tune Design
• NVH Analysis
• CFD Analysis
• Optimization
• Conclusion
Introduction

• Electric motors are everywhere:
 • Cell phone vibrating
 • Hard disk drives
 • Mixers
 • Electric cars
 • Robots

• More and more constraints
 • Cost
 • Efficiency (new rules imposed by regulator : IE3, NEMA Premium…)
 • Low weight for transportation (bikes, automobile, train, aerospace)
 • New needs for new applications (drone, robots, cobots, IoT…)

• Change is dramatically fast
• Need of new tools and new methods
Introduction

• How to improve motors?
 • Magnet with higher energy, and better withstanding temperature
 • Decrease iron losses (new material, new topology, less flux density, …)
 • New insulation material
 • New components for electronic (SIC and Gan technology)
 • High speed
 • Fractionnal slot concentrated winding
 • Better interaction with system
 • …

• Reducing lead times with tools and processes
Typical Electric Motor Design Workflow

Complexity
Cost
Know-how

SIMULATION-DRIVEN DESIGN

Compose – Scientific computations
Activate – System simulation
FluxMotor
Flux 2D
Flux 3D
Magneto-thermal in Flux

CAE

HyperStudy
OptiStruct
AcuSolve

Accurarcy

Analytical Computation
Pre-design software
2D FEA
3D FEA
Multi-Physics

CAD

Drawings

Project documentation
System Modeling

• The motor is embedded in a device, it has to communicate with it!
 • To get instructions of command
 • To have feedback from the motor
 • For health monitoring of the motor
System Modeling

- **SolidThinking/Compose**
 - System level

- **SolidThinking/Activate**
 - Allow including equivalent circuit motors)
 - Allow the use of tables
 - Or cosimulate with Flux 2D/SKEW/3D

- **SolidThinking/ Embed**
 - Real-time simulation directly accessible

- **Test nominal scenario including all components**
 - Battery
 - Mechanical constraints
 - Motor consumption,
Typical Electric Motor Design Workflow

- Complexity
- Cost
- Know-how

CAE

- HyperStudy
- OptiStruct
- AcuSolve
- Flux 3D
- Magneto-thermal in Flux

SIMULATION-DRIVEN DESIGN

- Flux 2D
- FluxMotor
- Activate – System simulation
- Compose – Scientific computations

CAD

- CAD Drawings
- Analytical Computation
- Pre-design software
- 2D FEA
- 3D FEA
- Multi-Physics
- Project documentation

Accuracy
Analytical Computation

• For each type of motor dedicated formula
• Often available in Excel format, Matlab, Compose or proprietary code

• Advantage
 • Very good correlation (due to X factor coming from experience)
 • All input data are well known

• Disadvantage
 • Limited to one type of motor
 • Experts are retiring
FluxMotor : A New Tool for Electric Machine Design

For machine designers and integrators

A dedicated tool
 - **Customizable templates**
 - Winding tool
 - **Easy to use**

Fast and accurate
 - Mixed analytical/FE based calculations
 - Embedded modeling knowledge

High productivity
FluxMotor: Checking with Prius 2004

- Old design, and easy to compare to measurement
- All results in less than half an hour

Efficiency with torque/speed curve
Typical Electric Motor Design Workflow

- **Complexity**
 - Cost
 - Know-how

- **Accuracy**
 - Analytical Computation
 - Pre-design software
 - 2D FEA
 - 3D FEA
 - Multi-Physics

- **Simulations**
 - FluxMotor
 - Activate – System simulation
 - Compose – Scientific computations

- **CAE**
 - HyperStudy
 - OptiStruct
 - AcuSolve
 - Flux 3D
 - Magneto-thermal in Flux

- **CAD**
 - Drawings
 - Project documentation
FEA Analysis

Accurate
- Fast and **accurate** solver
- Best-in-class modeling methods
- Efficient modeling of complex situations

Flexible
- Adjusted to the user needs
- Wide application coverage
- Customization & Automation

Connected
- CAD connection
- Coupled to system simulation
- Coupled to the best tools for multiphysics analysis

Parametric
- **Fully parameterized** models
- Embedded and easy to use
- Distribution of computation
Flux: Prius Example

- Simulate default conditions
 - Short-circuit test
 - Winding short-circuit strand
 - Excentricicites

- Compute accurately efficiency or characteristics of the motor
 - Compute losses in the motor due to supply (PWM)
 - Check demagnetization in the magnet

- Improve the motor
 - Reduce losses in the magnet
 - Reduce torque ripples of the motor
 - Reduce space and time harmonics of the torque to reduce noise and vibration
 - Optimize the magnet weight
Typical Electric Motor Design Workflow

Complexity
Cost
Know-how

Accuracy

Analytical Computation
Pre-design software
2D FEA
3D FEA
Multi-Physics

CAD
Drawings

CAE

HyperStudy
OptiStruct
AcuSolve
Flux 3D
Magneto-thermal in Flux
Flux 2D
FluxMotor
Activate – System simulation
Compose – Scientific computations

SIMULATION-DRIVEN DESIGN

15
NVH Analysis: Extracting Forces from Flux to OptiStruct

- **Goal**
 - Compute displacement and vibration generated from forces applied on stator
 - Avoid resonance issue due to the structure

- **Principle**
 - Extract magnetic forces applied on stator
 - Compute harmonics
 - Use harmonics as load of the mechanical computation

- **Note:** Flux 2D, or Flux 3D can be used
NVH Analysis on Prius Model

Mode 1: 710 Hz

Mode 4: 1495 Hz
Typical Electric Motor Design Workflow

- Complexity
- Cost
- Know-how

CAE

- HyperStudy
- OptiStruct
- AcuSolve
- Flux 3D
- Magneto-thermal in Flux

SIMULATION-DRIVEN DESIGN

- Flux 2D
- FluxMotor
- Activate – System simulation
- Compose – Scientific computations

Analytical Computation
Pre-design software
2D FEA
3D FEA
Multi-Physics

Accuracy
CFD Analysis

• Goal
 • Check different cooling methods
 • Find out hot spot

• Principle
 • Flux is used to model electromagnetic components to determine static thermal loading
 • Results are provided to AcuSolve and are used to define the elements based volumetric heat load

• Today : available in one way coupling
• Soon : available in 2 ways coupling
CFD Analysis: Prius Example

- Extract losses
 - Coil
 - Magnet
 - Iron losses

Water Jacket
Typical Electric Motor Design Workflow

- Complexity
- Cost
- Know-how

CAE

- HyperStudy
- OptiStruct
- AcuSolve
- Flux 3D
- Magneto-thermal in Flux

SIMULATION-DRIVEN DESIGN

- Flux 2D
- FluxMotor
- Activate – System simulation
- Compose – Scientific computations

Analytical Computation

Pre-design software

2D FEA

3D FEA

Multi-Physics

Project documentation
Optimization with HyperStudy

• Multi-disciplinary design exploration, study and optimization software
• Possibility to connect with other softwares
• Different types of use
 • DoE: Screening or Space filling
 • Fit: Response Surface (RS) building
 • Optimization: optimization with or without RS
 • Stochastic: Robustness analysis, Optimization taking into account uncertainties
Optimization with Flux: Prius Example

- Optimize the magnet size to reduce the magnet volume by keeping the initial performance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Initial Design</th>
<th>Prius Design</th>
<th>HyperStudy optimum</th>
</tr>
</thead>
<tbody>
<tr>
<td>BETAM (mm)</td>
<td>120</td>
<td>140</td>
<td>120</td>
</tr>
<tr>
<td>IPMHQ (mm)</td>
<td>15</td>
<td>10</td>
<td>8</td>
</tr>
<tr>
<td>BRIDGE (mm)</td>
<td>2</td>
<td>-</td>
<td>0,5</td>
</tr>
<tr>
<td>LM (mm)</td>
<td>12</td>
<td>5</td>
<td>5,98</td>
</tr>
<tr>
<td>MAGWID (mm)</td>
<td>30</td>
<td>54</td>
<td>39,99</td>
</tr>
<tr>
<td>LWEB (mm)</td>
<td>2,75</td>
<td>2,75</td>
<td>0,5</td>
</tr>
<tr>
<td>WEB (mm)</td>
<td>10</td>
<td>10</td>
<td>10,96</td>
</tr>
<tr>
<td>TORQUE_MEAN (N.m)</td>
<td>364,98</td>
<td>390</td>
<td>390,2</td>
</tr>
<tr>
<td>Magnet surface (mm²)</td>
<td>360</td>
<td>270</td>
<td>239,14</td>
</tr>
</tbody>
</table>
Conclusion

- Altair is the right suite to model E motor
 - Use the right tool at each design stage
 - Connexion between tools allow to save time and energy
 - Get accurate results with the right tool
 - Use optimization on the whole process
Building Complete Design Workflows

INPUTS
- CAD Imports
 - CATIA
 - Pro / Engineer
 - IGES, IGES advanced
 - STEP, STEP advanced
 - Parasolid
 - NX
 - Solidworks
- Mesh Imports
 - NASTRAN
 - PATRAN
 - UNIV Ideas
 - MED
- HyperMesh

SYSTEMS
- Activate, Compose
- MATLAB Simulink™
- LMS Amesim®
- Portunus

NVH
- OptiStruct
- LMS Virtual.Lab
- MSC Nastran
- ANSYS Mechanical

THERMAL
- AcuSolve
- STAR-CCM+
- ANSYS Fluent

MECHANICAL
- OptiStruct

TEMPLATES FOR MOTORS
- FluxMotor
- Motor-CAD & SPEED import

DRIVING FLUX
- Python
- With API
 - C/C++ language
 - Excel / VB script

OPTIMIZATION
- HyperStudy
- GOT-It

DISTRIBUTED COMPUTATION
- CDE

OUTPUTS
- CAD exports
 - SAT
 - CATIA V4, V5
 - IGES
 - STEP
 - MED
- Results export
 - Excel®
 - Test
 - XML

PBS Works
Thank you for your Attention!
Thanks to Other Altairians!

- Activate: Andrew Dyer, Abdessamed Soualmi
- OptiStruct: Christophe Bailly, Girish Mudigonda, Gildas Guilly
- AcuSolve: Michael Barton
- HyperStudy: Diana Mavrudieva