5G Antenna Design &
Network Planning
Challenges for 5G

5G Service and Scenario Requirements
- Massive growth in mobile data demand (1000x capacity)
- Higher data rates per user (10x)
- Massive growth of connected devices (10-100x)
- Lower latency for real-time connections (5x)
- Higher energy efficiency for longer battery life (100x)
- New use cases like connected cars, machine-to-machine (IoT)

Key Solutions
- Increased spectrum with trend to higher frequencies
 - 700 MHz for basic coverage
 - 3.5 GHz for high data rate services & capacity
 - 26/28 GHz for fiber like data rates & capacity hotspots
- Ultra-dense networks
- Massive MIMO antennas for beamforming & spatial multiplexing

Source: Huawei 5G Technology Vision
Introduction: Altair’s complete solutions for 5G analysis

• **FEKO** for 5G Antenna Design Challenges
 • Case study I: Mobile antenna design at 26 GHz
 • Case study II: Base-station antenna design at 26 GHz

• **WinProp** for 5G Radio Channel & Coverage Analysis
 • Case study I: 5G radio channel statistics for beamforming and channel analysis
 • Case study II: 5G radio planning for different frequency bands and antenna assumptions

• Conclusions
Antenna Design for Mobile Devices
Design Aspects at 5G frequency

At 26 GHz:
- Electrically more antenna real estate available
- Better matching without matching circuit
- In-band coupling reduced due to electrical separation
- Device integration aspects

Need to achieve high gain requirement
- More sophisticated feeding and control circuits needed
- Good isolation between array elements must be achieved

Optimization approach based on multi-variable and multi-goal
Array Design

- Design based on [1] re-optimized for 24-28 GHz band
 - WB dipole antenna element in linear 8x array
 - Printed, Rogers RT5880 substrate
 - Optimization with 5x frequency points
 - 8 geometric parameters considered
 - S_{nn} & S_{mn} optimization goals

- Optimized with FEKOs GRSM method
 - Optimized geometry integrated into PCB
 - Simulated with FDTD for full S-parameter and far-field characterization

[1] UWB mm-Wave Antenna Array with Quasi Omnidirectional Beams for 5G Handheld Devices - N. Parchin, et. al, ICUWB 2016
Optimized Array Design – S-parameter and Gain

S parameters vs Frequency

Gain vs Frequency
Array Design – Gain & Beam Steering at 26 GHz

Beam steering for the 8 element array: equal amplitude, constant phase delay
Array Design – Dual MIMO Configuration

Dual MIMO configuration 2x 8x arrays:
Isolation $<-30\text{dB}$ in operational bandwidth

pattern diversity strategies
Previously, extremely detailed CAD geometry was cumbersome
 • Over-discretize the FDTD mesh to resolve geometric detail
Now default meshing is < 1mm, most detail is inherently captured
 • Despite the electrical size at 26 GHz, the integrated antenna simulation can be run in < 1hr

PCB: part of antenna at low frequency → large ground plane at 26 GHz
Antenna Design for Base Station
Design Approach

- Optimization of 2x2 planar array using GRSM optimization method
 - Optimization at center frequency
 - 8 geometric parameters considered: Ws, Ls -> Distances between antennas
 - S_{nn} & S_{mn}, gain optimization goals
 - Solved with MoM

- Extend to full array
 - Simulate with FDTD/MLFMM to capture full S-parameters over operational bandwidth, farfield / beam steering /etc.

- Advantages of this approach:
 - Optimization of the sub-array with PGF (Planar Green Function) extremely fast
 - MoM (MLFMM) extremely efficient for multiport S-parameter simulation
Array Design

- Design based on [1] (designed to operate in 22 GHz band) – re-optimized for 26 GHz band
 - Loop design, including slot to increase efficiency
 - Printed, low cost, FR4 substrate

Array Design – S-parameter

- Optimization strategy holds for all 3 array configurations:
 - Resonance frequency 26 GHz maintained
 - Slight loss of bandwidth for the larger arrays, but still > 2 GHz
 - Worst case coupling of ~ -15 dB maintained
Array Design – Gain & Beam Steering

Gain for 4x4, 8x8, 16x16 array configurations

Beam steering for the 8x8 array
Radio Channel & Coverage Analysis
WinProp Software Suite

Radio Planning Tool

- Wave propagation models for various scenarios
 - Rural/Suburban
 - Urban
 - Indoor/Tunnel
- Radio network planning of various systems
 - Mobile cellular
 - WLAN
 - Broadcasting
 - Mesh/sensor networks
- Applications
 - Radio channel analysis
 - Radio network planning
FEKO ↔ WinProp Interaction

3D pattern for outdoor 3-sector antenna computed in **FEKO**

Urban radio coverage considering this antenna computed in **WinProp**
Wave Propagation Analysis
Radio Channel

Multipath Propagation
• Multiple propagation paths between Tx and Rx
• Shadowing, reflection, diffraction, scattering
• Different delays and attenuations
• Destructive and constructive interference
• Depending on frequency
• Various bands of interest for 5G: 700 MHz, 3.5 GHz, 26 GHz, …

Superposition of Multiple Paths

No line of sight (Rayleigh fading)

Line of sight (Rice fading)
Wave Propagation > 6 GHz

Coverage for Tx Below Rooftop Level (as in 5G)

Multipath situation

• Multiple reflections
• Wave guiding in street canyon
• Few rays over the rooftops (diffraction)
Wave Propagation > 6 GHz

Impact at interactions due to higher frequency

- Transmission
 - Penetration of walls hardly feasible
 - LOS and NLOS regions will dominate (impact of street grid)
- Reflection
 - Specular paths will dominate (besides direct path)
- Diffraction
 - Highly attenuated for higher frequencies as diffraction coefficient $\sim 1/\sqrt{\text{frequency}}$
 - Will more and more disappear for frequencies > 26 GHz
- Scattering
 - Roughness becomes large for most surfaces (due to small wavelength) \Rightarrow diffuse scattering
 - 5G transmission will use highly directive antennas on both ends \Rightarrow scattering difficult to be used for reliable connection
Wave Propagation > 6 GHz

Atmospheric absorption and rain attenuation at mm-wave frequencies

- Additional attenuation tolerable for cell sizes on the order of 200m
 - Atmospheric loss < 0.1 dB/km at 30 GHz, but 20 dB/km at 60 GHz due to oxygen absorption
 - Rain attenuation limited for frequency bands around 26 GHz and 28 GHz

Source: T. S. Rappaport et al.: MM-Wave Mobile Communications
5G Radio Channel
5G Radio Channel

Massive MIMO antenna arrays

- Arrays with 100s of antenna for separating 10s of users in same radio resources (time/frequency) & at mm waves, large arrays are compact

- Combination of
 - Beamforming, Spatial Multiplexing (MIMO), Relevant channel statistics
 - Delay spread, Azimuth/elevation angular spread both for BS and MS
 - Evaluation of cumulative, distribution function (CDF)
WinProp 3D Ray Tracing

- Ultra-fast due to single preprocessing of scenario
- Ray tracing considers dominant characteristics
 - Reflection (Fresnel coefficients)
 - Diffraction (GTD/UTD)
 - Scattering
 - Shadowing / Wave guiding
 - Penetration into buildings
- Prediction of radio channel in time, frequency and spatial domain
 - Field strength
 - Propagation delays
 - Angles at Tx and Rx
5G Radio Channel: Channel Statistics

- Computed for individual cells
- Consideration of omni BS antenna
- Cell areas given by best server map
- Delay spread at 26 GHz
- Azimuth angular spreads at 26 GHz

![Graphs of delay and angular spread](image)

Design the Difference with Digital Twin
5G Radio Channel: Beamforming

- Massive MIMO arrays
 - transmit different signals to different users simultaneously in same frequency band
 - increase Rx power levels and SNIR for dedicated user
 - reduce interference for others

4x4 array on BS side

16x16 array on BS side
5G Radio Channel Analysis(1)

- Comparison of simulated path loss at 28 GHz & 2.9 GHz
 - New York city scenario
 - WinProp 3D ray tracing model
 - BS at street intersections
 - Areas marked in black rectangles evaluated in below diagram

- Path loss over BS ➞ MS distance gives much smaller range for 28 GHz
- Wide range of path loss for same/similar distances at 2.9 GHz

5G Radio Channel Analysis (2)

1. # of paths between BS and MS: on median, there are 2-4 paths.

2. Power fraction of the second strongest path (at least 10° away): on average, 7 dB weaker

3. Azimuthal separation between two strongest paths on average about 20° (see fig. 3)

- WinProp simulation results in agreement to NYU measurements

5G Radio Network Planning
5G Radio Network Planning: Deployment Scenarios(1)

- Ultra-dense networks for provision of required high data rate volumes
 - More than 1,000 small power base stations in 1km2 urban area
 - Multi-threading required to predict multiple base stations simultaneously
- Strong signal-to-noise-and-interference-ratio (SNIR) requirements for high data rates
- 3.5 GHz frequency bands for area-wide services and the 26/28 GHz bands for capacity hotspots
- Network planning allows to simulate the coverage before the deployment → 5G deployment strategies
5G Radio Network Planning: Deployment Scenarios(2)

- Beamforming on base station side
 - Increase Rx power levels and SNIR for dedicated user
 - Reduce interference for others
 - 4x4 antenna matrix provides antenna gain of 16.7 dBi (considered at BS EIRP)

- Optional beamforming on mobile station side
 - Array of 8 linear antenna elements provides antenna gain of 13.3 dBi

- Consider MS beamforming gain in network planning at 26 GHz (see results on the right)
Conclusions

• 5G will provide **higher throughputs** and many **new applications**
 • massive MIMO usage & higher frequency bands (e.g. 26 and 28 GHz)

• 5G mobile phone and base station antenna design in **FEKO**
 • FEKO combines **optimization** and **dedicated solvers** for arrays and electrically large structures
 • **Ideal solution** for 5G antenna design

• 5G radio channel and radio coverage analysis in **WinProp**
 • For **all types of environments**: urban, dense urban, suburban, rural, industrial, indoor, tunnel, stadium,…
 • Evaluation of **3D spatial channel profiles** and **channel statistics** for massive MIMO
 • WinProp **3D ray tracing model** correctly predicts the mm wave propagation
 • Ultra-dense networks require fast model for the **efficient network planning**