Lenovo HPC Solution
Cooling Technology
How to measure Power Efficiency

• **PUE**

 \[\text{PUE} = \frac{\text{Total Facility Power}}{\text{IT Equipment Power}} \]

 - **Power usage effectiveness (PUE)** is a measure of how efficiently a computer data center uses its power;
 - PUE is the ratio of total power used by a computer facility to the power delivered to computing equipment.
 - Ideal value is 1.0
 - It does not take into account how IT power can be optimised

• **ERE**

 \[\text{ERE} = \frac{\text{Total Facility Power} - \text{Treuse}}{\text{IT Equipment Power}} \]

 - **Energy Reuse Effectiveness** measures how efficient a data center reuses the power dissipated by the computer
 - ERE is the ratio of total amount of power used by a computer facility to the power delivered to computing equipment.
 - An ideal ERE is 0.0. If no reuse, ERE = PUE
Lenovo Choice of Cooling

Air Cooled
- Standard air flow with internal fans
- Fits in any datacenter
- Maximum flexibility
- Brodest choice of configurable options supported
- Supports Native Expansion nodes (Storage NeX, PCI NeX)

<table>
<thead>
<tr>
<th>PUE</th>
<th>2 – 1.5</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERE</td>
<td>2 – 1.5</td>
</tr>
</tbody>
</table>

Indirect Water Cooled
- Air cool, supplemented with RDHX door on rack
- Uses chilled water with economizer (18°C water)
- Enables extremely tight rack placement

<table>
<thead>
<tr>
<th>PUE</th>
<th>1.4 – 1.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERE</td>
<td>1.4 – 1.2</td>
</tr>
</tbody>
</table>

Direct Water Cooled
- Direct water cooling without fans
- Higher performance per watt
- Free cooling (inlet up to 50°C water)
- Energy re-use
- Densest footprint and high TDP SKU
- Ideal for geos with high electricity costs and new data centers

<table>
<thead>
<tr>
<th>PUE</th>
<th>1.1</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERE</td>
<td>< 1</td>
</tr>
</tbody>
</table>

Choose for broadest choice of customizable options
Choose for compromise between flexibility and energy efficiency
Choose for highest performance and energy efficiency
Next Generation Liquid Cooling

• Enable high performance / power processors – 165W - 205W+ CPUs
• Enable high performance memory with direct water cooling (3D Cross Point)
• Support wide inlet water range 10°C – 50°C
• Target > 95% heat recovery (Air 5°C - 40°C; Water 10°C – 50°C)
• Direct warm water cooled almost all system components
• Provide Rack (Chassis & Manifold) insulation
• Investigate solutions for water cooled power supplies
Improved Water Cooling Architecture for Purley

Improvements for 90% heat to water recovery

• Focus on maximizing efficiency for high (50°C) inlet water temperatures

• Direct water cooling of processors, memory, voltage regulation devices and IO devices (Network and Disk)

• Water circuit traverses all critical components to optimize cooling.
NeXtScale improvements for 95% heat capture

- Existing node water loop and quick disconnects
- New technology for capturing heat radiated from small components
- New water cooled storage devices, and transceivers
- New sealed full wide tray
- New Liquid Cool PSU
- One PSU per full wide tray
- New Liquid Cool PSU Manifold
- Existing chassis WCT manifold
Power consumption, Junction Temperature and Cooling

- Example: HPL scores across a range of temperatures:
 - 12 sample processors running on NeXtScale System WCT

- HPL scores remain mostly flat for junction temperatures in the range that water cooling operates.

- The HPL scores drop significantly when junction temperature is in range that air cooling operates.

- Conclusion: Water Cooling enables the highest performance possible for each processor SKU at any water inlet temperature under 45°C

* Vinod Kamath
DWC reduces Processor Temperature on Xeon 2697v4

Conclusion: Direct Water Cooling lowers processor power consumption by about 5% and allows higher processor frequency.

NXT with 2 socket 2697v4, 128 GB 2400 MHz DIMM Inlet Water temperature is 28°C.
Air and DWC performance DC power on Xeon 2697v4

<table>
<thead>
<tr>
<th>Turbo On</th>
<th>Air-cooled</th>
<th>Water-cooled</th>
<th>Performance delta</th>
<th>Power delta</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Gigaflops</td>
<td>Joules</td>
<td>Watts</td>
<td>Gigaflops</td>
</tr>
<tr>
<td></td>
<td>1324</td>
<td>270445</td>
<td>415</td>
<td>1367</td>
</tr>
<tr>
<td></td>
<td>1324</td>
<td>271687</td>
<td>417</td>
<td>1371</td>
</tr>
<tr>
<td></td>
<td>1323</td>
<td>272016</td>
<td>417</td>
<td>1372</td>
</tr>
<tr>
<td></td>
<td>1322</td>
<td>272485</td>
<td>418</td>
<td>1372</td>
</tr>
<tr>
<td></td>
<td>1322</td>
<td>272525</td>
<td>418</td>
<td>1374</td>
</tr>
<tr>
<td>average</td>
<td>1323</td>
<td>417</td>
<td>1371</td>
<td>412</td>
</tr>
<tr>
<td>Turbo Off</td>
<td>Gigaflops</td>
<td>Joules</td>
<td>Watts</td>
<td>Gigaflops</td>
</tr>
<tr>
<td></td>
<td>1241</td>
<td>285224</td>
<td>407</td>
<td>1251</td>
</tr>
<tr>
<td></td>
<td>1241</td>
<td>285867</td>
<td>408</td>
<td>1252</td>
</tr>
<tr>
<td></td>
<td>1241</td>
<td>285739</td>
<td>408</td>
<td>1252</td>
</tr>
<tr>
<td></td>
<td>1240</td>
<td>285884</td>
<td>408</td>
<td>1251</td>
</tr>
<tr>
<td></td>
<td>1240</td>
<td>286071</td>
<td>408</td>
<td>1250</td>
</tr>
<tr>
<td>average</td>
<td>1241</td>
<td>407</td>
<td>1251</td>
<td>388</td>
</tr>
</tbody>
</table>

Conclusion:
With Turbo OFF, Direct Water Cooling reduces power by 5%
With Turbo ON, it increases performance by 3% and still reduces power by 1%

DC energy is measured through aem DC energy accumulator.
2 X 3 petaflops SuperMUC systems at LRZ Phase 1 & Phase 2

Phase 1

- Fastest computer in Europe on TOP500, June 2012
 - 9324 nodes with 2 Intel Sandy Bridge EP CPUs
 - HPL = 2.9 petaflop/s
 - InfiniBand FDR10 interconnect
 - Large File Space for multiple purpose
 - 10 Petabyte File Space based on IBM GPFS with 200 GB/s I/O bandwidth
- Innovative technology for energy effective computing
 - Hot Water Cooling (45°C)
 - Energy Aware Scheduling
- Most energy efficient high-end HPC system
 - PUE 1.1
 - Total power consumption over 5 years to be reduced by ~ 37% from 27.6 M€ to 17.4 M€

Phase 2

- Acceptance completed
 - 3096 nx360 M5 compute nodes
 Haswell EP CPUs
 - HPL = 2.8 petaflop/s
 - Direct Hot Water Cooled, Energy Aware Scheduling
 - InfiniBand FDR14
 - GPFS, 10 x GSS26, 7.5 PB capacity, 100 GB/s I/O bandwidth
CooLMUC-2

- Lenovo NeXtScale Water Cool Technology (WCT) system
 - Water inlet temperatures 50 °C
 - All season chiller-less cooling
 - 384 compute nodes
 - 466 teraflop/s peak performance

Energy Reuse Effectiveness (ERE) measures how efficient a data center reuses the power dissipated by the computer

ERE = \frac{\text{Total Facility Power} - \text{Treasure}}{\text{IT Equipment Power}}

- SorTech Absorption Chillers
 - based on zeolite coated metal fiber heat exchangers
 - a factor 3 higher than current chillers based on silica gel
 - COP = 60%
 - Total electricity reduced by ~60%
Re-Use of Waste Heat

Leibniz Supercomputing Centre
Thank you