Altair Optimization Contest 2018

산업용 로봇 경량화를 위한 로봇 구조해석 및 최적설계

참여 부문 : 주제2- 로봇 팔 최적화

학교 : 홍익대학교

학과: 기계시스템디자인공학과

구분: 대학생

이름 : 이현호(4학년)

장혁재(4학년)

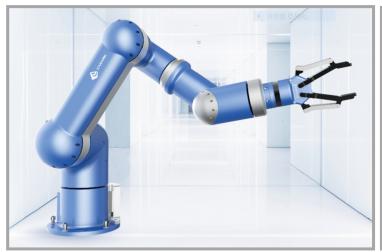
- 1.1 산업용 로봇이란?
- 1.2 산업용 로봇의 문제점과 해결 방안
- 1.3 설계목표 및 요구조건

2. 개념 설계

- 2.1 개념 설계 개요
- 2.2 초기 기하학적 형상 설정
- 2.3 동작의 구분
- 2.4 모터 각속도 설정

- 2.5 정적 하중 분석
- 2.6 다 물체 동역학 해석
- 2.7 위상 최적화 및 구조해석
- 2.8 결과 분석 및 설계 변경
- 2.9 형상 재설계

3. 상세 설계


- 3.1 상세 설계 개요
- 3.2 형상 최적화 결과
- 3.3 최종 설계 검토

- 1.1 산업용 로봇이란?
- 1.2 산업용 로봇의 문제점과 해결 방안
- 1.3 설계목표 및 요구조건

1.1 산업용 로봇이란?

생산성 향상이나 노동력 절감을 위하여 생산 공정 중에 사용되는 장치로서 자동차, 조선, 전자 제품, 식품, 소비재 등을 생산하는데 광범위하게 사용됨.

1.2 산업용 로봇의 문제점과 해결 방안

문제점: 기존의 산업용 로봇은 대다수가 고중량

해결 방안 : 제품 요구 사항에 맞게 조정이 가능한 경량화된 로봇의 설계 및 제작

기대 효과: 전력 수요 감소(친환경 로봇), 제작 비용 절감, 핸들링 용이

1.3 설계목표 및 요구조건

목표 : 요구되는 동작을 정확하게 수행하면서 안전율이 높은 산업용 로봇 팔의 경량화

요구 조건

기능 수행

100kg의 상자를 10초간 초기 위치에서 180° 반대의 위치로 이동

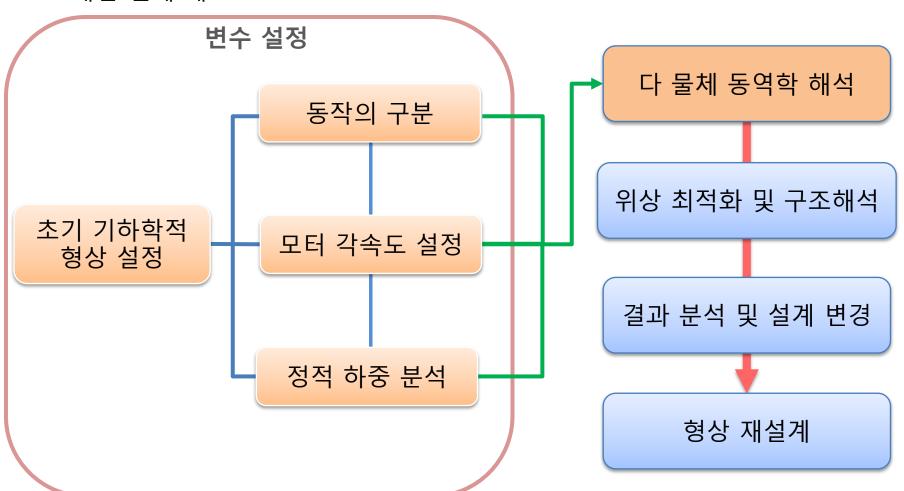
동작

5회의 회전 동작, 반경 1.0m 이상의 이동 거리

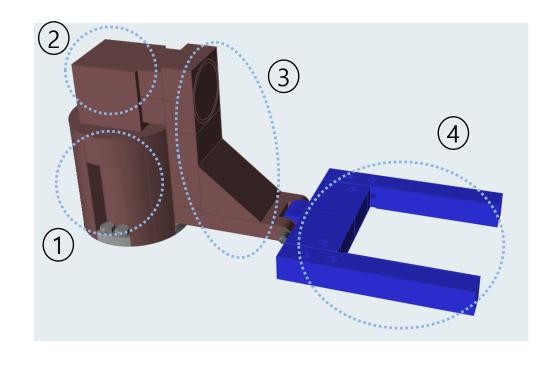
강도

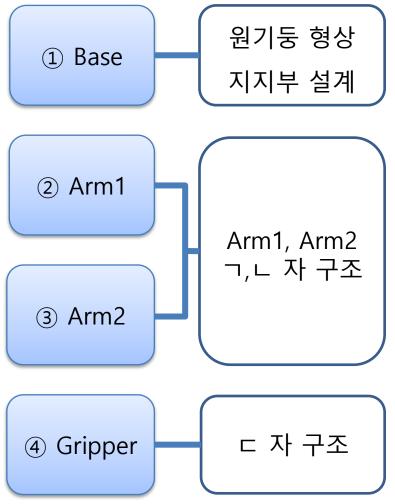
전 과정에서 항복이 일어나지 않도록 설계

재료

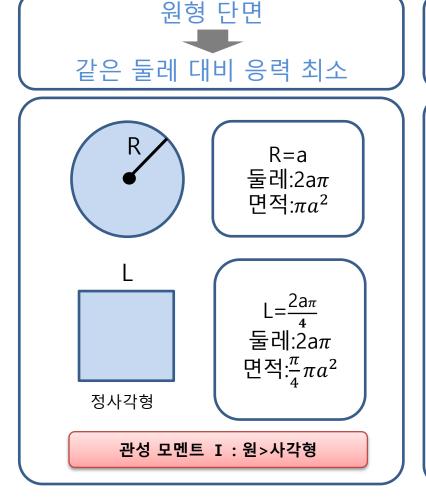

스틸, 알루미늄 사용

- 2.1 개념 설계 개요
- 2.2 초기 기하학적 형상 설정
- 2.3 동작의 구분
- 2.4 모터 각속도 설정
- 2.5 정적 하중 분석
- 2.6 다 물체 동역학 해석
- 2.7 위상 최적화 및 구조해석
- 2.8 결과 분석 및 설계 변경
- 2.9 형상 재설계




2.1 개념 설계 개요

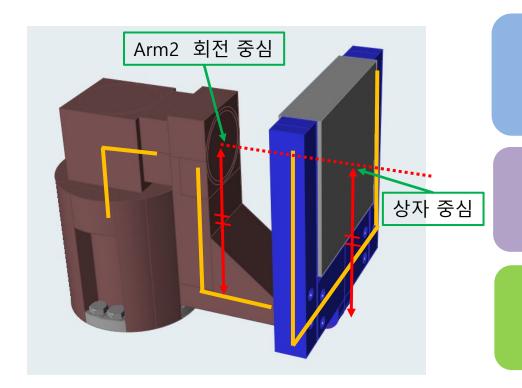
2.2 초기 기하학적 형상 설정



2.2 초기 기하학적 형상 설정

Base

지면과 결합 조립의 용이



2.2 초기 기하학적 형상 설정

► Arm1, Arm2, Gripper

Arm1, Arm2, Gripper ㄱ ㄴ ㄷ 구조

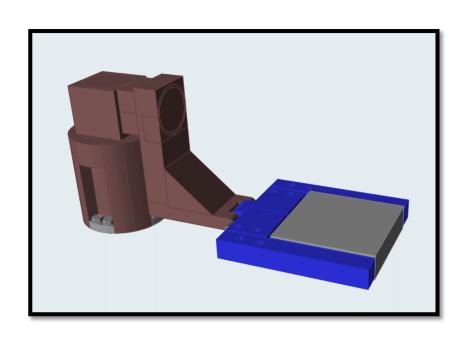
Arm2의 회전 중심과 상자의 무게 중심을 같은 축 상에 위치시켜 편심에 의한 모멘트 방지

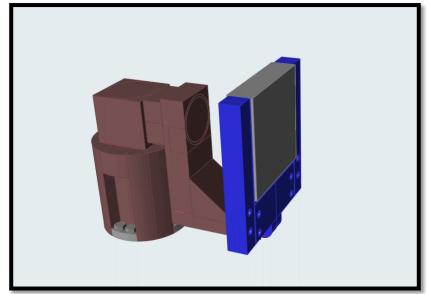

동작을 정확히 수행하기 위한 Arm2 ㄴ자 팔 구조

상자 양 옆을 효율적으로 잡기 위한 다 자 집게 구조

2.3 동작의 구분

STEP 구분 (step 1, 2, 3, 4, 5)

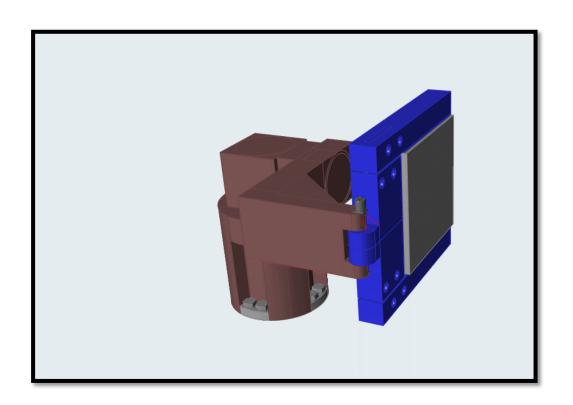




2.3 동작의 구분

➤ Step 1 (0초~1.5초)

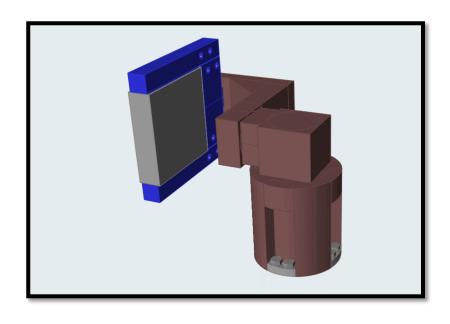
➤ Step 2 (1.5초~3.0초)

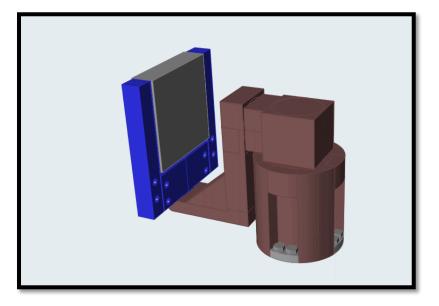

Rot 90°

Rot 90°

2.3 동작의 구분

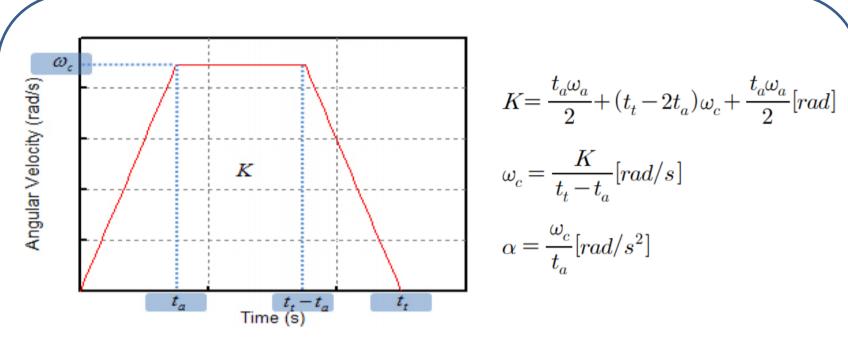
➤ Step 3 (3.0초~7.0초)


Rot 180°



2.3 동작의 구분

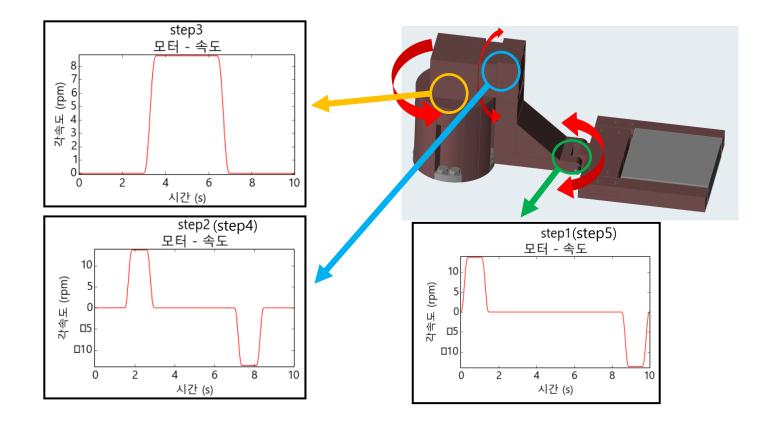
➤ Step 4 (7.0초~8.5초)


Rot 90°

Rot 90°

2.4 모터 각속도 설정

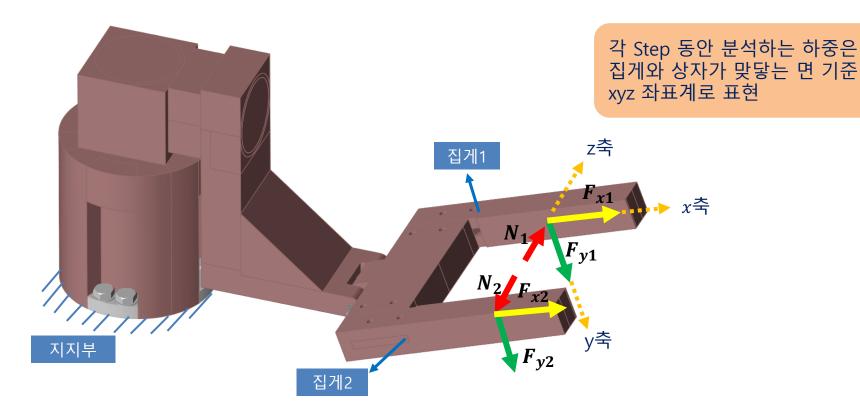
·구동시간 내 관절 회전각을 만족하기 위한 시간-각속도 그래프와 식 선정


 $K(rad) = 관절의 총 회전각도, <math>t_a(s) = 관절 구동기의 가감속 시간, <math>t_t(s) = 총 구동시간$ (K = MT 전체 면적)

2.4 모터 각속도 설정

	K [deg]	K [rad]	t_a [s]	$t_t - t_a[s]$	t_t [s]	ω_c [rad/s]	α [rad/ s^2]
Step1 (Step5)	90.00	1.57	0.40	1.10	1.50	1.43	3.57
Step2 (Step4)	90.00	1.57	0.40	1.10	1.50	1.43	3.57
Step3	180.00	3.14	0.60	3.40	4.00	0.92	1.54

·시간 각속도 그래프를 기반으로 각 모터 각속도 입력 값(dwell) 결정



2.5 정적 하중 분석

* 그림에 표현된 하중은 전부 내력이며, 상자의 형상과 자중, 내력은 가시성을 위해 별도 표현하지 않음

· 분석에서의 가정

- 1. 집게와 상자 사이 마찰계수를 물질의 일반적인 마찰계수 값인 0.6으로 가정
- 2. 상자가 떨어지지 않기 위해서는 상자와 집게 사이의 최대 정지 마찰력이 상자에 의한 하중보다 크도록 수직력을 가해야함.

2.5 정적 하중 분석

· 하중 분석 그래프

 N_1, N_2 $N_{max} = 991 \text{ N}$ 827.5 N - N_2 10 N iΘ [rad] F_{x1} , F_{x2} 490.5 N Θ [rad] $|F_{y1}, F_{y2}|$ 490.5 N Θ [rad]

* 전제 조건 : 상자 중심을 포함한 영역을 잡고 있어서 편심에 의한 모멘트 무시 가능

$$N_{1,2} = \frac{F_{1,2}}{\mu} + 10 (N)$$

$$(: \mu N_{1,2} > F_{1,2})$$

$$F_{1,2} = \sqrt{F_{x1,2}^2 + F_{y1,2}^2}$$

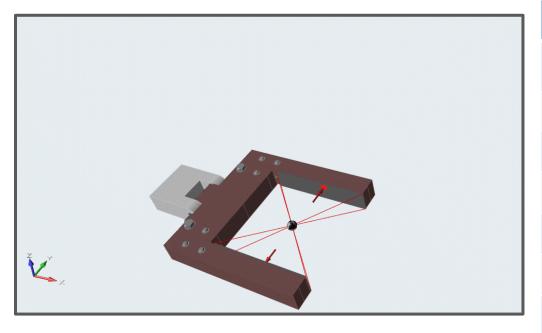
$$F_{max} = 817.5 N \ge F_{1,2}$$

 $N_{max} = 991 N \ge N_{1,2}$

 F_{max} , N_{max} 를 다 물체 동역학 해석에 고려

2.6 다 물체 동역학 해석 (Inspire)

· Inspire motion 시뮬레이션 설정 (집게부)

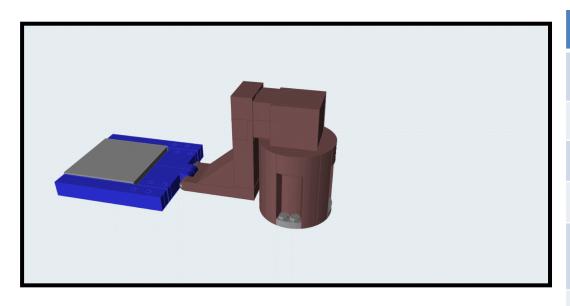

집게부

전체 Step동안 형상이 ㄷ 자로 고정

 $\therefore F_{max}$, N_{max} 기준 시뮬레이션 적용 가능

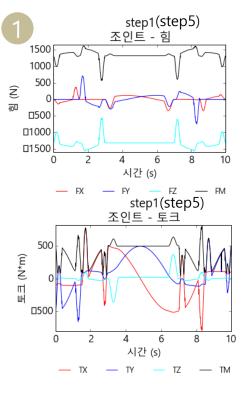
모든 Step에서의 안전율을 고려

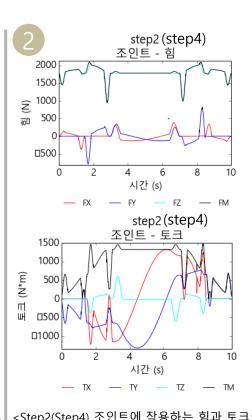
설정	내용	
해석 대상	Gripper1,2 case Gripper middle case	
해석 시간	1.5초	
재질	전체 알루미늄	
N_{max}	991 N (양 쪽 집게 판 수직 하중)	
F_{max}	100kg 질량(상자 무게중심 위치)	
모터	Fastener로 가정	
몸체부(지면)	Arm2 절단부로 가정	

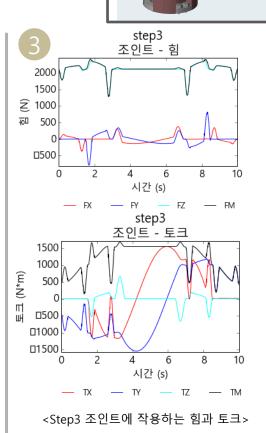


2.6 다 물체 동역학 해석 (Inspire)

· Inspire motion 시뮬레이션 설정 (몸체부)


전체 시스템에서 모든 내력은 전부 상쇄되므로 상자의 자중만 고려


설정	내용	
해석 대상	Arm1, Arm2, Base	
해석 시간	10초	
재질	전체 알루미늄	
F	100kg 상자	
모터	Base, Arm1 사이 1개 Arm1, Arm2 사이 1개 Arm2, Gripper 사이 1개	
지면	Base	


△ Altair

- 2.6 다 물체 동역학 해석 (Inspire)
- · 각 조인트에 작용되는 힘과 토크 산출
- ➡ 위상 최적화 구조해석 조건에 적용

2.7 위상 최적화 및 구조해석 (Inspire)

· 위상 최적화 입력변수 설정

최적화 대상 모델	설계 내용	
Base / Arm1 / Arm2 / Gripper 알루미늄 케이스	목표	강성 최대화
	목표 질량	총 디자인 영역 체적의 30%
	설계 제한	 알루미늄 재질 응력 < 250MPa 스틸 재질 응력 < 380MPa 제작성을 위해 모든 부품은 대칭 조건 부여 안전율 > 1.2

2.7 위상 최적화 및 구조해석 (Inspire)

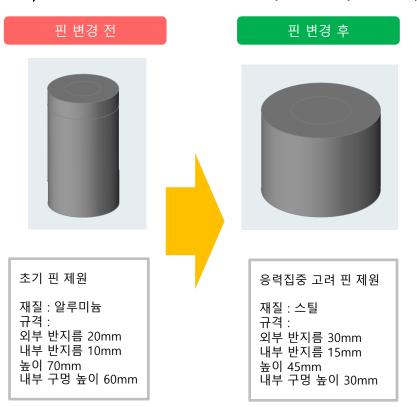
· 위상 최적화 결과

	Base Case	Arm1 Case	Arm2 Case
위상 최적화 결과			
상세 내용	재질 : 알루미늄 형상 : 4순환 대칭 질량 변화 : 95.2kg ➡ 42.2kg	재질 : 알루미늄 형상 : 좌우 대칭 질량 변화 : 32.8kg ➡ 10.2kg	재질 : 알루미늄 형상 : 좌우 대칭 질량 변화 : 47.2kg ➡ 15.8kg

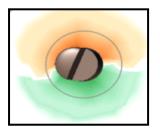
2.7 위상 최적화 및 구조해석 (Inspire)

· 위상 최적화 결과

	Gripper middle case	Gripper 1 case	Gripper 2 case
위상 최적화 결과			
상세 내용	재질 : 알루미늄 형상 : 상하/좌우 대칭 질량 변화 : 13.9kg ➡ 4.7kg	재질 : 알루미늄 형상 : 좌우 대칭 질량 변화 : 8.7kg ➡ 2.5kg • 좌우 대칭으로 제작 가능 : 양쪽 집게에 동일하게 적용	재질 : 알루미늄 형상 : 대칭 조건 없음 질량 변화 : 8.7kg ➡ 3.1kg * 제작이 어려워 선택하지 않음


2.8 결과 분석 및 설계 변경

· 고려 사항: 응력집중부


* 모터와 모터케이스는 응력집중이 없어 각 부품 케이스와 일체인 알루미늄으로 가정

* Base, Arm1 사이 / Arm1, Arm2 사이 총 4개 핀 변경

➡ 각 모터 조인트 부근 응력 집중(최대 응력) 발생 ➡ 조인트 연결 핀 스틸 재질 + 규격 설정 ➡ 안전율 만족

핀 변경 전 응력집중

조인트 주변의 알루미늄 재질 부품 케이스에 응력 집중 작용

< 조인트 주변 인장력(주황)과 압축력(초록) >

핀 변경 후 응력집중

안전율을 만족하며 케이스에 응력 집중 영 향이 가지 않게 하는 핀 규격 설계

< 조인트 주변 인장력(주황)과 압축력(초록) >

△ Altair

2.9 형상 재설계

ㆍ 형상 재설계 과정

위상 최적화를 토대로 얻은 형상에서 제작성이 심히 떨어지는 돌출부 및 급격한 곡선으로 구성된 구멍 재설계

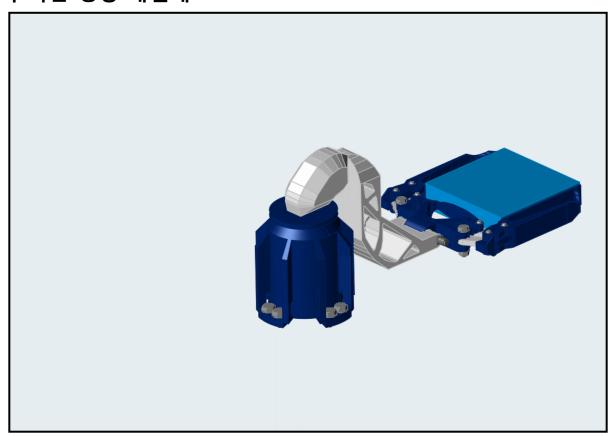
2.9 형상 재설계

ㆍ 형상 재설계 결과 ■ 설계 요구조건 만족

	Base Case	Arm1 Case	Arm2 Case
개념 설계 결과			
	재질 : 알루미늄	재질 : 알루미늄	재질 : 알루미늄
	형상 : 4순환 대칭	형상 : 좌우 대칭	형상 : 좌우 대칭
상세 내용	최대 Von-Mises 응력 : 109.5 Mpa	최대 Von-Mises 응력 : 94.17 Mpa	최대 Von-Mises 응력 : 141.5 Mpa
., 0	안전율 : 3.47	안전율 : 4.035	안전율 : 1.767
	질량 : 51.5 kg	질량 : 11.7 kg	질량 : 21 kg

Altair

2.9 형상 재설계


ㆍ 형상 재설계 결과 ■ 절계 요구조건 만족

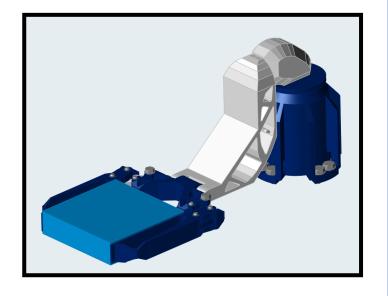
Gripper middle case Gripper case 개념 설계 결과 재질: 알루미늄 재질: 알루미늄 형상: 좌우 대칭 형상: 상하/좌우 대칭 상세 최대 Von-Mises 응력: 44.3Mpa 최대 Von-Mises 응력: 24 Mpa 내용 안전율: 5.643 안전율: 10.42 질량 : 5 kg 질량: 2.6 kg

2.9 형상 재설계

· 위상 최적화 기반 형상 재설계

로봇 총 질량 : 100.6 kg

- 3.1 상세 설계 개요
- 3.2 형상 최적화 결과
- 3.3 최종 설계 검토



3.1 상세 설계 개요

위상 최적화를 통해 얻은 컨셉 디자인

형상 최적화로 최종 설계를 진행 - **Optistruct** – Free Shape Optimization

- 1. Objective(목적)
- ▶ 질량 최소화
- 2. Design Variables(설계 변수)
- ▶ 선택한 디자인 영역의 노드 (각 부품 케이스)
- 3. **Design Constraints**(제한조건)
- ➤ 최대 Von Mises 응력 < 250MPa
- 4. Response(반응)
- ▶ 응력, 질량

3.2 형상 최적화 결과 ── 설계 요구조건 만족

	Base Case	Arm1 Case	Arm2 Case
형상 최적화 결과			Shape Boundary (Grow/Shrink) 1 000E-00 7 778E-01 5 556E-01 1 111E-01 1 111E-01 - 1 555E-01 7 778E-01 - 5 555E-01 7 778E-01 - 1 000E-00 Ories 2x55 Nen +1 000E-00 Ories 2x55 Ories 1473
	재질 : 알루미늄	재질 : 알루미늄	재질 : 알루미늄
	형상 : 4순환 대칭	형상 : 좌우 대칭	형상 : 좌우 대칭
상세 내용	최대 Von-Mises 응력 : 100.9 Mpa	최대 Von-Mises 응력 : 104.4 Mpa	최대 Von-Mises 응력 : 111.5 Mpa
	안전율 : 3.47 ➡ 3.766(+8.53%)	안전율 : 4.035 ➡ 3.64	안전율: 1.767 🗪 2.242 (+26.9%)
	질량 : 51.5 kg ➡ 43.3kg (-15.9%)	질량: 11.7 kg ➡ 6.5kg (-44.4%)	질량: 21 kg ➡ 13.5kg(- <mark>35.7%)</mark>

3.2 형상 최적화 결과 📥 설계 요구조건 만족

	Gripper middle case	Gripper case
형상 최적화 결과		
	재질 : 알루미늄	재질 : 알루미늄
	형상 : 상하/좌우 대칭	형상 : 좌우 대칭
상세 내용	최대 Von-Mises 응력 : 41.33 Mpa	최대 Von-Mises 응력: 34.74 Mpa
	안전율 : 5.643 ➡ 6.049(+7.2%)	안전율 : 10.42
	질량 : 5 kg ➡ 4.1 kg (-18%)	질량 : 2.57 kg ➡ 2.43 kg (-5.4%)

3.3 최종 설계 검토

성능

주어진 시간 안에 원하는 거동으로 상자를 옮기는 성능 만족

강도

모든 부품 안전율 > 1.2

질량

로봇 전체 케이스 질량 23.5% 경량화 (94.4kg -> 72.26kg)

Q & A