알테어의 e-Mobility 솔루션 Altair`s e-Mobility Solutions

Altair

Technology

Conference

2018

Agenda

- E-mobility: Electrifying transportation
- Efficient Design Workflow for an Electric Motor for EV/HEV Application
- Refined Electromagnetic design and Optimization of the motor
- Connected Vehicles
- Wireless Power Transfer
- Summary & Conclusions

E-mobility: Electrifying transportation

e-Mobility?

Connected car

Electric car/Hybrid car

Environmental car

Autonomous car

Altair`s Simulation Solution for e-Mobility

Electromagnetics

• FEKO, Flux

Thermal

AcuSolve

Structural

OptiStruct & RADIOSS

Multibody Systems

MotionSolve

Systems & Math

Compose, Activate, Embed

Altair Electro-Magnetic Solvers

Flux for EM simulation of static and low frequency applications related to electric machines, actuators and sensors, high power equipment and heat treatment

FEKO for EM simulation of applications related to antenna design, antenna placement, EMC, radiation hazard, bio-electromagnetics, radomes, etc.

WinProp for wave propagation modelling and radio network planning complementing FEKO

Low Frequency

High Frequency

Efficient Design Workflow for an Electric Motor for EV/HEV Application

e-Mobility Powertrain Metrics

- Objective and quantitative
 - Fuel economy
 - Powertrain Performance
 - Drivability
 - Emissions
 - Safety
 - Traction/Handling Performance
 - ...
- e-Mobility technologies/topologies are allowing system performance to be improved over traditional designs

- Power-split device! (planetary gear)
- Planetary gear set acts like CVT connects engine, motor, and generator to differential
- 2 Electric Machines (EM's)
- Pro: Engine operates at optimal load and gets good performance, drivability, efficiency
- Con: Complexity, cost

Series/Parallel Hybrid System

Readme

Misc Calculations

- Component abstraction:
 - Look-up tables (engine & motor torque, efficiency)
 - Physics based (vehicle, planetary gear set)
- Used to explore:
 - Supervisory controller design
 - Minimize fuel consumption, battery usage
 - Performance (straight-line acceleration, braking, etc.)
 - Component selection: engine, battery, motor, etc.
 - Power needs
 - Efficiencies of system \rightarrow effects on fuel consumption

Inputs:

- 1) Drive Cycles
 - EPA Urban Drive cycle
 - > 1200 seconds runs in < 10 simulation seconds
- 2) Initial Battery State-of-Charge (SOC)

Outputs:

- 1) Fuel Economy, Battery SOC
- 2) Power Demands Engine, Electric Machines

Output

Model-Based Development Workflows

Activate + Flux support of Model-Based Development

- Work with different levels of fidelity depending on your analysis needs
 - Motor Design/Control
 - Supervisory HEV Control

Model-Based Development Workflows

PMSM Modeling Methods

• Full co-simulation Flux + Activate for Best Accuracy

Voltage to fed the motor

Refined Electromagnetic design and Optimization of the motor

Flux: Low Frequency Analysis for Electrical Engineering

For more than 35 years, Flux simulation software has been used worldwide in leading industries and university labs for electromagnetic and thermal analyses. It has become a reference for the high accuracy it delivers.

Whatever the electric device or equipment you are designing, it captures the complexity of electromagnetic and thermal phenomena to predict the behaviour of your products with precision.

Design & Optimization

- The HyperStudy-Flux coupling allows applying the HyperStudy approaches (DOE, Fit, Optimization and Stochastic) for Flux models design exploration and optimization
- The general workflow is:

Coupled Simulations for Motor's Noise Analysis

- From electric excitation ... to noise
 - electric energy creates the electromagnetic field that generates the torque
 - · It also generates parasitic forces at the iron/air interface
- Parasitic forces generating noise depend on:
 - the type and topology of the machine
 - the electric excitation frequencies

Coupled Simulations for Motor's Noise Analysis

Chaining 3 types of analysis

Coupled Thermal + Electromagnetic analysis

• Coupling with AcuSolve for CFD simulation

Connected Vehicles

V2X Communications

- Two main technologies and solutions:
 - 1. short-range communications (DSRC based on IEEE 802.11p standard)
 - 2. wide-area infrastructure-based communications (including LTE-V2X and 5G)

V2V Case – Technology and Antenna Requirements

- Case of study focused on V2V communication based on IEEE 802.11p standard
- Car manufacturer requirement for the antenna: **omnidirectional coverage**

V2V Case – Antenna Placement Analysis with FEKO

Simulations of 5.9 GHz antenna in different locations of vehicle done with FEKO

V2V Case – Defined Configuration for Antennas

WinProp Software Suite

Radio network planning tool

- Wave propagation models for various scenarios
 - Indoor/Tunnel
 - Urban
 - Rural/Suburban
 - Satellite
- Radio network planning of various systems
 - · Cellular incl. LTE and beyond
 - WLAN, WIMAX
 - TETRA, Broadcasting
- Applications
 - Radio channel analysis
 - Radio network planning

V2V Case – Range Analysis and Simulation with WinProp

- 1. Range of communication between 2 vehicles should be 500m in lineof-sight (LoS) conditions
- 2. Analyze the impact on the communication range in non-line-of-sight (non-LoS) conditions

V2V Case – WinProp Simulation of LoS Scenario

V2V Case – WinProp Simulation of Non-LoS Scenario

(A) Lost communication, even with multi-path effects

(B) Communication is possible because of visibility between cars

(C) Communication is possible because of:

- system using 2 antennas providing a more omnidirectional pattern
- some visibility between cars and multipath effect

Wireless Power Transfer

Inductive Charging Systems for EV

Some Key Topics on Inductive Charging with FEKO

- Efficiency of inductive charging systems
- Influence of offset between coils
- Radio interference to other systems (e.g. PEPS/KeylessGo)
- Thermal effects (with Flux)
- Radiation hazard analysis

Coupling Between Coil Antennas with FEKO

Misalignment Tolerance Between Coil Antennas with FEKO

For WPT application both coils' positions may not perfectly match

- Offset in x-, y-, or z-direction
- Influence on efficiency

3.5 100 90 Recevied Power (kW) 3.0 Efficiency (%) 80 70 2.5 100 mm 60 100 mm 2.0 DX = 0; DY = 0N = 0.04 ; DY = 0 Higher tolerance in x-direction 50 = 0; DY = 0.04 because of coil shape DX = 0.08 ; DY = 0 DX = 0; DY = 0.08 DX = 0.1; DY = 0DX = 0; DY = 0.1 40 1.5L 80 81 82 83 84 85 86 87 89 90 88 Frequency [kHz]

Misalignment Tolerance

Importance of Ferrites in Design of WPT Systems

Function of ferrite plates on WPT systems:

- Reduce coil antenna size and increase efficiency
- Minimizing eddy currents on metallic scattering surfaces
- Minimize magnetic field emissions
 - to secure compliance with EM field safety standards for human exposure
 - to avoid EMC interference with other electric devices

Modelling technique in FEKO for ferrite material

- For low frequency simulation (e.g. 85 kHz) Volume Equivalence Principle (VEP) is the appropriate method (mesh with tetrahedra)
- Double precision is recommended and for lower frequencies LF stabilization could be necessary

FEKO Simulation of Coils with Ferrites

- Coil parameters:
 - K = 0.81
 - C₁ = 5.38 nF
 - C₂ = 5.49 nF
 - R_L = 125 Ω

Ferrite with μ_r = 2400

Summary & Conclusions

- System Modeling & Smart Control
 - Validate Architectural Choices
 - Improve Design Efficiency
 - Reduce Prototyping & Maintenance Cost
- Powertrain Electricfication & Hybridization
 - Design Efficient Electric Motors
 - Optimize Charging Systems
- Meeting EMC & Connectivity requirements

Thank you !!