# In-Wheel EV의 선회 성능 개선을 위한 제어기 설계 및 최적화

빙글빙글

건국대학교 기계공학부

황필상, 전경훈

지도 교수: 김창완 교수님

2020년 8월 28일





# 목차

#### 1. 서론

- 1.1 연구 배경
- 1.2 연구 주제
- 1.3 연구 이론 : 차량동역학
- 1.4 연구 이론 : DYC 알고리즘
- 1.5 연구 절차

#### 2. In-Wheel EV MBD 해석

- 2.1 MBD 해석 개요
- 2.2 해석 모델
- 2.3 경계조건 & 하중조건
- 2.4 MBD 해석 결과

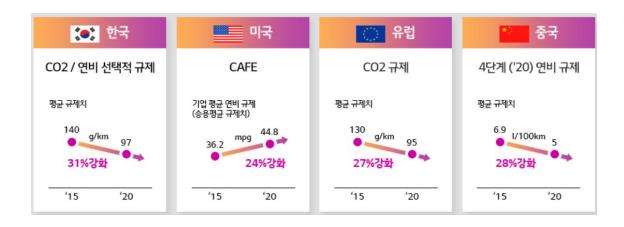
#### 3. 최적설계

- 3.1 최적화 개요
- 3.2 DYC 알고리즘 설계
- 3.3 구동 토크 비율 & DYC
- 3.4 최적화 1 구동 토크 비율 최적화
- 3.5 최적화 2 DYC 알고리즘 최적화
- 3.6 최적화 3 구동 토크 비율 & DYC 알고리즘 최적화
- 3.7 최적화 해석 결과 비교

#### 4. 결론






# 1. 서 론

- 1.1 연구 배경
- 1.2 연구 주제
- 1.3 연구 이론 : 차량동역학
- 1.4 연구 이론: DYC 알고리즘
- 1.5 연구 절차



#### 1.1 연구 배경

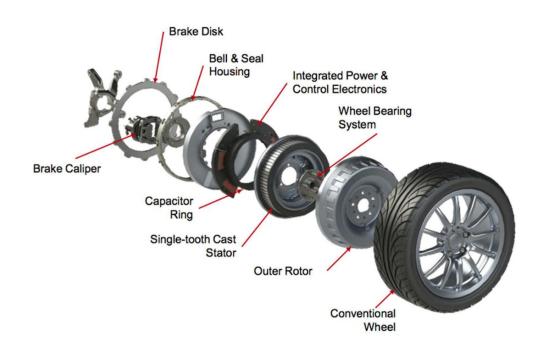
- 친환경 규제로 전기 자동차 및 전기모터에 대한 연구 증가
- 내연기관차와 달리 바퀴별로 독립 구동이 가능한 In-Wheel 모터
- In-Wheel 모터의 빠른 응답성으로 더 개선된 선회 성능이 기대됨



#### 전기차 모터 기술 현황

○ 선연수 기자 | ② 승인 2019.10.10 08:40 | ♀ 댓글 0

기존의 인라인(In-line) 방식은 모터를 차축에 연결해 축에 연결된 2개의 바퀴를 동시에 구동하는 형태였다. 이와 다르게 인휠(In-wheel) 방식은 자동차 바퀴휠(Wheel) 자체에 모터가 장착되는 형태로 각 바퀴가 독립적으로 구동되는 기술이다. 기존 시스템에 사용되던 변속기나 차동기어가 필요없게 되면서 차체를 더 가볍고 간단하게 제작할수 있다. 바퀴를 직접 제어하기 때문에 토크 응답성이 높고, 에너지 효율이 높으며, 차량이 회전할 경우 바퀴마다 토크가 온전히 독립적으로 발생해 안전성 또한 비교적 우수하다. 그러나 각 바퀴에 모터를 장착하고, 이에 따른 온도, 속도 등을 감지하는 센서 또한 각각 장착함으로써 높은 비용을 요구하게 된다. 또한 모든 바퀴를 감지하고 제어해야 하기에 고난이도의 데이터 분석시스템 설계가 필요하다.



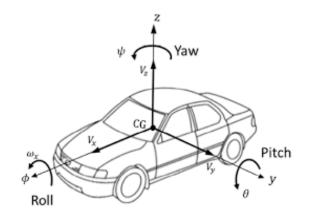

#### 1.2 연구 주제

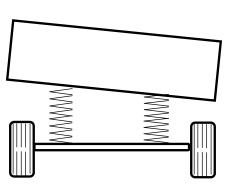
#### ■ In-Wheel 모터

- 차량 선회 시 양쪽 바퀴의 회전수에 차이를 주어 안정성을 높여주는 차동 기어 부재
- 각 바퀴를 독립적으로 구동하여 구동력에 차이를 주고 선회 안정성 향상
- 동력 전달 장치가 제거되므로 차량 공간 확보에 유리
- 선회 성능 관점에서 In-Wheel에 관해 연구하고자 함








■ 선회시에 바깥쪽 바퀴의 회전반경이 안쪽 바퀴의 회전반경 보다 더 큼



- 선회시에 원심력에 의해서 바깥쪽으로 Roll이 발생 바깥쪽 바퀴에 하중이 더 가중
  - → 안 쪽 바퀴에 하중이 덜 걸려서 미끄러지는 현상





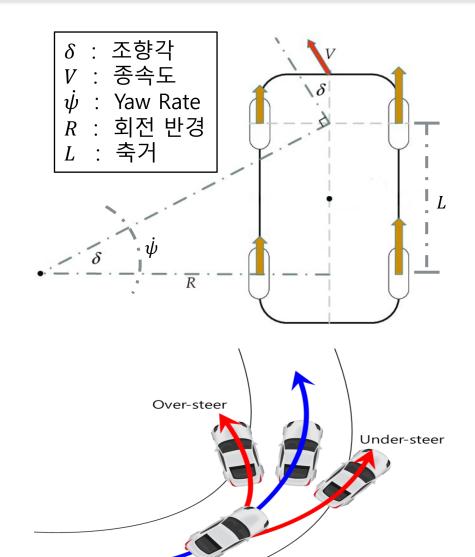




■ 좌, 우측 종방향 미끄러짐을 최소화 하여 차량의 슬립 방지

$$LongSlip = -\frac{V_x - r_e \Omega}{V_x}$$

LongSlip : 종방향 미끄러짐 (%)


 $V_x$ : 휠 중심 종방향 속도 (m/s)

 $r_e$ : 유효 회전반경 (m)

Ω : 휠 각속도 (rad/s)

- 양의 슬립은 바퀴가 회전하고 있음을 나타내고, 음의 슬립은 미끄러짐을 나타냄
- 슬립이 -1인 바퀴의 표면 속도가 0이면 회전 없이 슬라이딩
- 속도 없이 회전을 하는,  $r_e\Omega \neq 0$ ,  $V_x=0$  은 무한대의 슬립을 의미





• 조향각  $\delta$ 가 미소하면

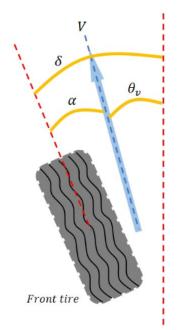
 $\delta \cong \tan \delta = \frac{L}{R}$ 

• 목표 선회 반경 R은

 $R = \frac{L}{\tan \delta} \cong \frac{L}{\delta}$ 

• 종속도와 Yaw Rate의 관계식은

- $\dot{\psi} = \frac{V}{R}$
- 위 두 식을 연립하여 목표 Yaw Rate를 구함
- $\dot{\psi}_{des} = \frac{(\tan \delta)V}{L} \cong \frac{\delta V}{L}$


- Understeer : 입력 조향각 보다 더 적게 회전
- Oversteer : 입력 조향각 보다 더 많이 회전
- 목표 Yaw Rate 추종을 통해 중립조향 유지



#### Vehicle model

$$\begin{aligned}
\mathbf{m}\alpha_{y} &= \mathbf{F}_{yf} + \mathbf{F}_{yr} \\
m(\ddot{y} + v_{x}\ddot{\psi}) &= F_{yf} + F_{yr} \\
&= 2C_{\alpha f}\alpha_{f} + 2C_{\alpha r}\alpha_{r} = 2C_{\alpha f}\left(\delta - \frac{\dot{y} + l_{f}\dot{\psi}}{v_{x}}\right) + 2C_{\alpha r}\left(-\frac{\dot{y} - l_{r}\dot{\psi}}{v_{x}}\right) \\
\ddot{y} &= -\frac{2C_{\alpha f} + 2C_{\alpha r}}{mv_{x}}\dot{y} - \left(\frac{2l_{f}C_{\alpha f} - 2l_{r}C_{\alpha r}}{mv_{x}} + v_{x}\right)\dot{\psi} + \frac{2C_{\alpha f}}{m}\delta
\end{aligned}$$

$$\begin{split} I_{z}\alpha_{yaw} &= l_{f}F_{yf} - l_{r}F_{yr} \\ I_{z}\ddot{\psi} &= l_{f}F_{yf} - l_{r}F_{yr} = l_{f}\left\{2C_{\alpha f}\left(\delta - \frac{\dot{y} + l_{f}\dot{\psi}}{v_{x}}\right)\right\} - l_{r}\left\{2C_{\alpha r}\left(-\frac{\dot{y} - l_{r}\dot{\psi}}{v_{x}}\right)\right\} \\ \ddot{\psi} &= -\frac{2l_{f}C_{\alpha f} - 2l_{r}C_{\alpha r}}{l_{z}v_{x}}\dot{y} - \frac{2l_{f}^{2}C_{\alpha f} + 2l_{r}^{2}C_{\alpha r}}{l_{z}v_{x}}\dot{\psi} + \frac{2l_{f}C_{\alpha f}}{l_{z}}\delta \end{split}$$



 $\delta$  : 조향각

 $\theta_n$ : 타이어 속도각

 $C_{\alpha f}$ ,  $C_{\alpha r}$ : 선회강성계수

m : 차량의 질량

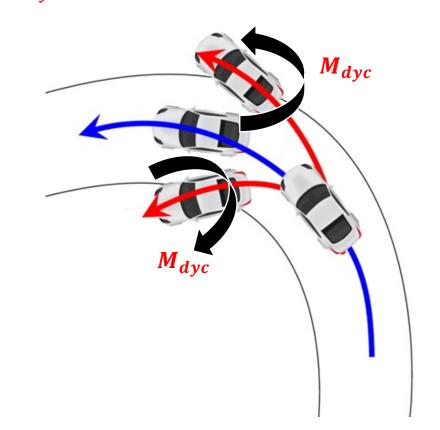
α : 차량의 미끄러짐각

 $\psi$ : Yaw

 $\dot{\psi}$  : Yaw Rate

$$\begin{aligned} \alpha_f &= \delta - \theta_{vf} \\ \alpha_r &= -\theta_{vr} \\ F_{yf} &= 2C_{\alpha f}\alpha_f = 2C_{\alpha f} \left(\delta - \theta_{vf}\right) \\ F_{yr} &= 2C_{\alpha r}\alpha_r = 2C_{\alpha r} (-\theta_{vr}) \end{aligned}$$




#### 1.4 연구 이론 : DYC 알고리즘

#### Vehicle model

$$\begin{aligned} \boldsymbol{m}\boldsymbol{a}_{\boldsymbol{y}} &= \boldsymbol{F}_{\boldsymbol{y}f} + \boldsymbol{F}_{\boldsymbol{y}r} \\ \boldsymbol{m}(\ddot{\boldsymbol{y}} + \boldsymbol{v}_{\boldsymbol{x}}\ddot{\boldsymbol{\psi}}) &= F_{\boldsymbol{y}f} + F_{\boldsymbol{y}r} \\ &= 2C_{\alpha f}\alpha_f + 2C_{\alpha r}\alpha_r = 2C_{\alpha f}\left(\delta - \frac{\dot{\boldsymbol{y}} + l_f\dot{\boldsymbol{\psi}}}{\boldsymbol{v}_{\boldsymbol{x}}}\right) + 2C_{\alpha r}\left(-\frac{\dot{\boldsymbol{y}} - l_r\dot{\boldsymbol{\psi}}}{\boldsymbol{v}_{\boldsymbol{x}}}\right) \\ \ddot{\boldsymbol{y}} &= -\frac{2C_{\alpha f} + 2C_{\alpha r}}{m\boldsymbol{v}_{\boldsymbol{x}}}\dot{\boldsymbol{y}} - \left(\frac{2l_fC_{\alpha f} - 2l_rC_{\alpha r}}{m\boldsymbol{v}_{\boldsymbol{x}}} + \boldsymbol{v}_{\boldsymbol{x}}\right)\dot{\boldsymbol{\psi}} + \frac{2C_{\alpha f}}{m}\delta \end{aligned}$$

$$\begin{split} I_{z}\alpha_{yaw} &= l_{f}F_{yf} - l_{r}F_{yr} + M_{dyc} \\ I_{z}\ddot{\psi} &= l_{f}F_{yf} - l_{r}F_{yr} = l_{f}\left\{2C_{\alpha f}\left(\delta - \frac{\dot{y} + l_{f}\dot{\psi}}{v_{x}}\right)\right\} - l_{r}\left\{2C_{\alpha r}\left(-\frac{\dot{y} - l_{r}\dot{\psi}}{v_{x}}\right)\right\} + M_{dyc} \\ \ddot{\psi} &= -\frac{2l_{f}C_{\alpha f} - 2l_{r}C_{\alpha r}}{I_{z}v_{x}}\dot{y} - \frac{2l_{f}^{2}C_{\alpha f} + 2l_{r}^{2}C_{\alpha r}}{I_{z}v_{x}}\dot{\psi} + \frac{2l_{f}C_{\alpha f}}{I_{z}}\delta + \frac{M_{dyc}}{I_{z}} \end{split}$$

*M<sub>dvc</sub>*를 통해 Under/Oversteer 해결 가능



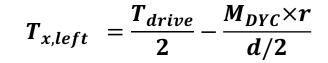


#### 1.4 연구 이론 : DYC 알고리즘

#### ■ 목표 yaw moment

• Yaw Rate Error로 PI 제어

$$M_{DYC} = K_P(\dot{\psi}_{des} - \dot{\psi}) + K_I(\dot{\psi}_{des} - \dot{\psi})$$


• 횡방향 운동방정식을 통해 아래의 식 만족

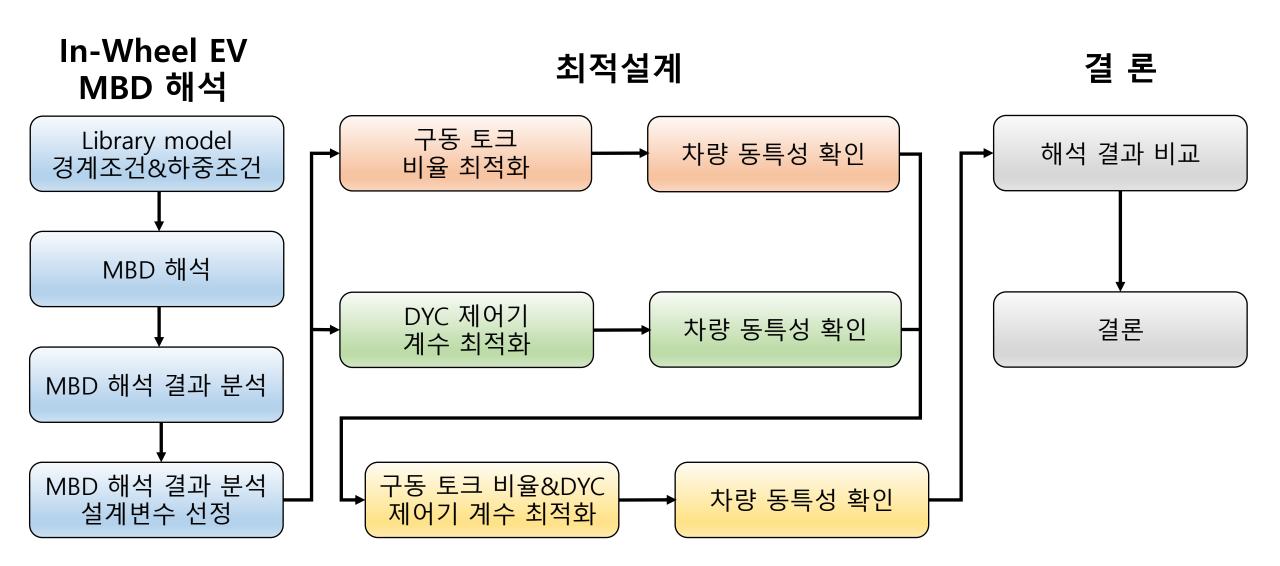
$$M_{DYC} = \frac{d}{2} (F_{x, right} - F_{x, left})$$

#### ■ 구동 토크

•  $T_{drive} = T_{x,left} + T_{x,right}$ 

#### ■ 토크 분배 알고리즘




$$T_{x,right} = \frac{T_{drive}}{2} + \frac{M_{DYC} \times r}{d/2}$$



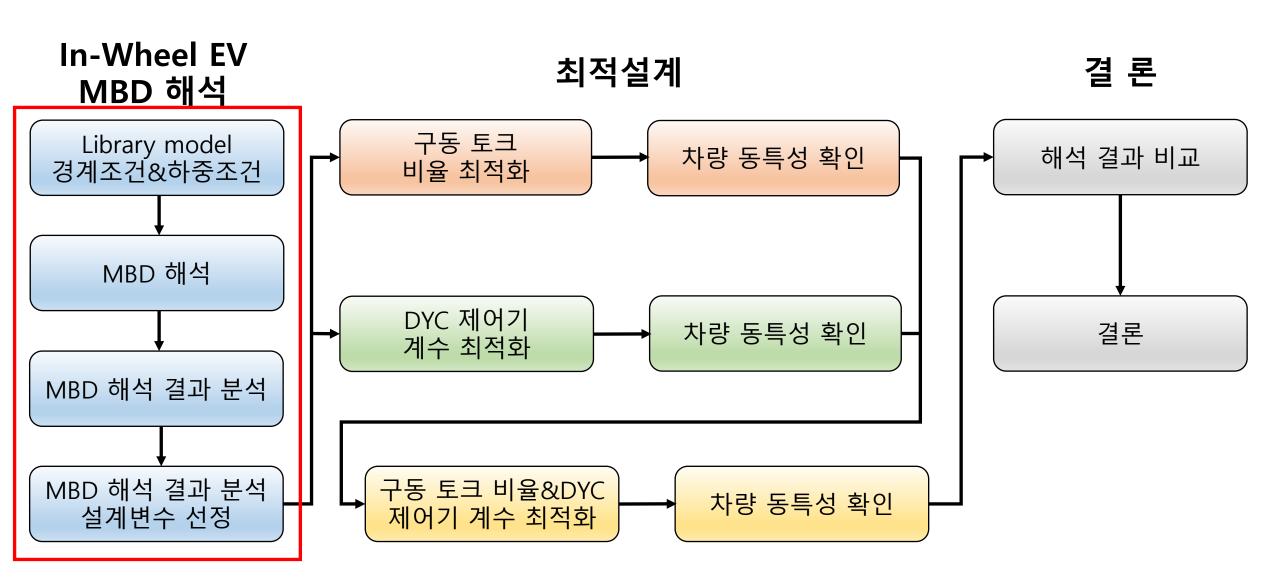




#### 1.5 연구 절차






# 2. In-Wheel EV의 MBD 해석

- 2.1 MBD 해석 개요
- 2.2 해석 모델
- 2.3 경계조건 & 하중조건
- 2.4 MBD 해석 결과

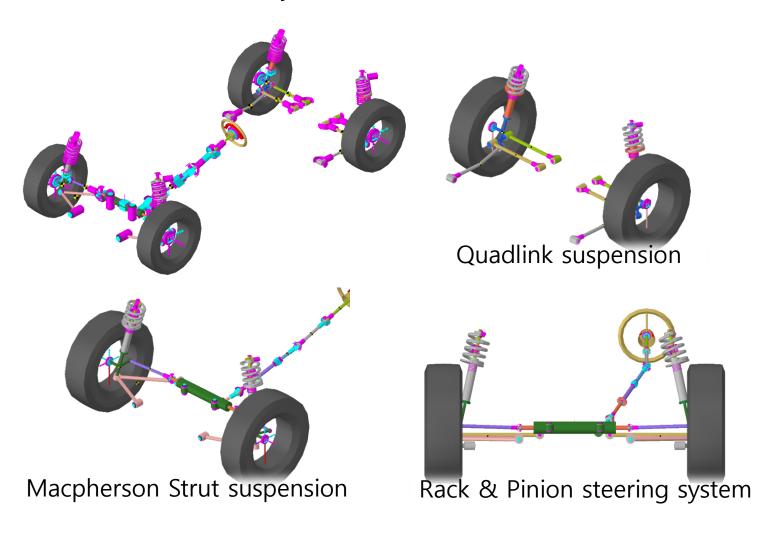




#### 연구 절차






#### 2.1 MBD 해석 개요

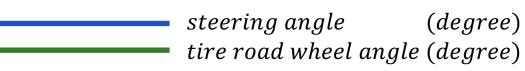
- 차량이 선회할 때의 동특성을 확인하기 위해 MBD (Multi Body Dynamics) 해석 진행
- MotionSolve Library Full Vehicle 을 이용해 In-Wheel EV로 재구성
- 안정적인 MBD 해석을 위해 초기 속도를 부여하고, 경계조건 & 하중조건을 적절히 부여
- 조향각 (Steering angle)에 따라 달라지는 조향비 (Steering Ratio)를 MBD해석을 통해 확인
- 동일한 조향각, 구동 토크를 가한 상황에서의 MBD 해석

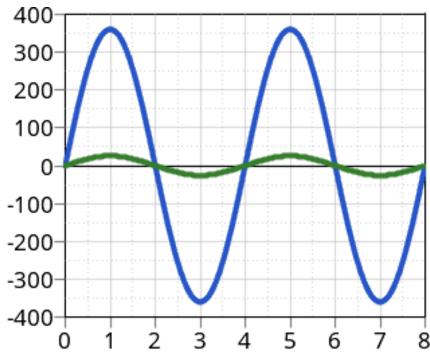


# 2.2 해석 모델

■ Motionsolve 내 Library 모델 사용

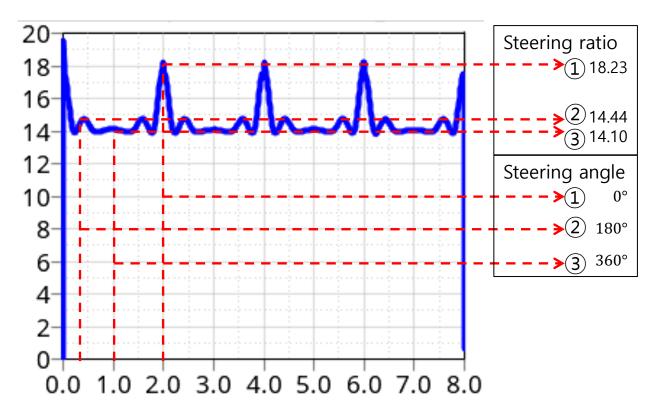



#### ■ Full Vehicle 제원


| d (tread)                          | 1.500 m        |
|------------------------------------|----------------|
| $\mathit{l_f}$ (front wheel to CG) | 1.469 <i>m</i> |
| $l_r$ (rear wheel to CG)           | 1.231 <i>m</i> |
| m (mass)                           | 1261 <i>kg</i> |
| r (unloaded radius)                | 0.3135 m       |
| $r_e$ (Effective rolling radius)   | 0.3105 m       |



#### 2.2 해석 모델


•  $steering\ ratio = \frac{steering\ angle}{tire\ road\ wheel\ angle}$ 





•  $steering \ angle = 360^{\circ} \cdot \sin(\frac{\pi}{2}t)$ 

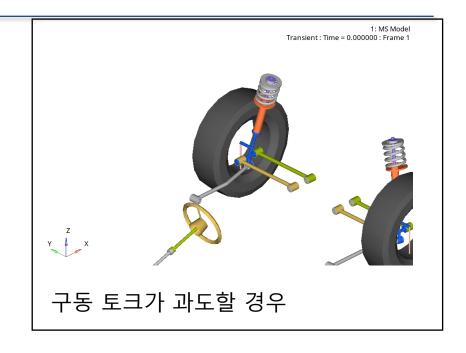
#### steering ratio(degree/degree)

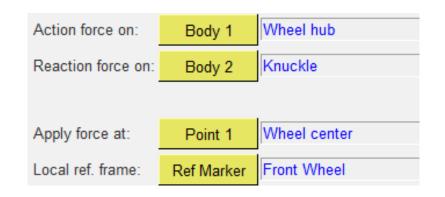


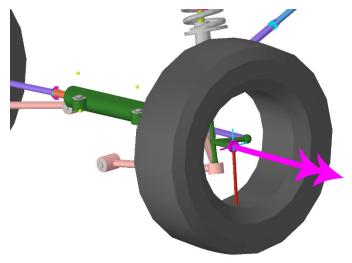


#### 2.3 경계조건 & 하중조건

- 조향각: 180° (STEP 함수 이용) STEP(TIME,0.05,0,0.10,180D)
- 지면에서의 바퀴 각도 : 180° / 14.44 = 12.47°
- 접촉 조건 : MF/Swift Tire
- 단일 마찰계수 부여가 아닌 타이어 모델 사용
- 초기 속도 : 3 m/s
- 초기 속도 부여를 통해 해석 초기에 과도한 진동 억제


| TNO_car205_60R15.tir<br>[LONGITUDINAL_COEFFICIENTS] |                |                                       |
|-----------------------------------------------------|----------------|---------------------------------------|
| PDX1                                                | = 1.0422       | \$Longitudinal friction Mux at Fznom  |
| PDX2                                                | = -0.08285     | \$Variation of friction Mux with load |
|                                                     |                |                                       |
| [LATERAI                                            | _COEFFICIENTS] |                                       |
| PDY1                                                | = 0.8785       | \$Lateral friction Muy                |
| PDY2                                                | = -0.06452     | \$Variation of friction Muy with load |
|                                                     |                |                                       |
| •••••••                                             |                |                                       |


| Translational velocity |            |
|------------------------|------------|
| ✓ Vx:                  | -3000.0000 |
| □ Vy:                  | 0.0000     |
| □ Vz:                  | 0.0000     |
| Rotational velocity    |            |
| ☐ Wx:                  | 0.0000     |
| ☐ Wy:                  | 0.0000     |
| ₩z:                    | 9.6630     |

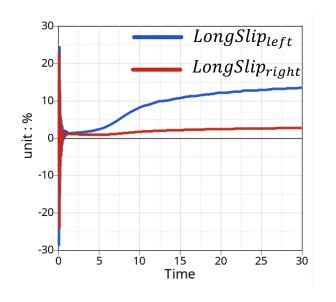


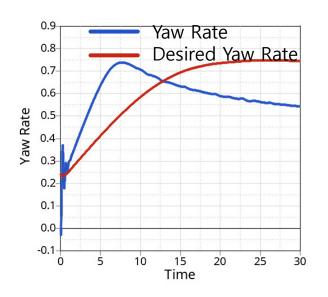

#### 2.3 경계조건 & 하중조건

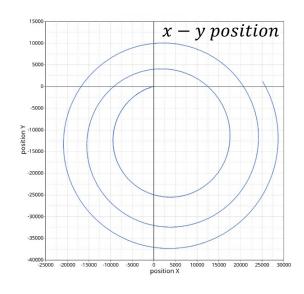
- Library model Powertrain 및 동력전달장치 제거
- 전륜 양쪽 바퀴에 직접 토크 부여로 인휠 모터 장착 가정
- 인휠 모터 장착시 너클에서 반력을 받는 것을 논문으로 확인
- 각 바퀴에 Torque : 250 N·m (STEP 함수 이용) STEP(TIME,0,0,1,250) (후륜 서스펜션이 과도한 변형이 일어나지 않고, 내연기관 구동 토크와 유사하도록 250 N·m 선정)







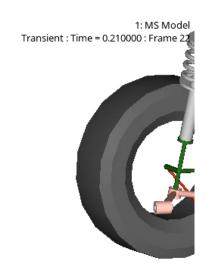

# 2.4 MBD 해석 결과

■ MBD 해석 결과 (LongSlip, Yaw Rate Error, x - y positon)








- 안쪽 바퀴가 바깥쪽 바퀴보다 종방향 미끄러짐이 심하게 발생
- 목표 Yaw Rate 를 추종하지 않고 주행
- 선회반경이 일정하지 않으며 점점 바깥쪽으로 이탈





# 2.4 MBD 해석 결과 문제 확인

- 안쪽 바퀴가 과하게 미끄러지는 영상
- 선회반경이 동일하지 않고 증가하는 영상
- \*\* 예시를 위해 동영상으로 확인 가능하도록 구동토크와 조향각을 과하게 부여함



1: MS Model Transient : Time = 0.000000 : Frame 1

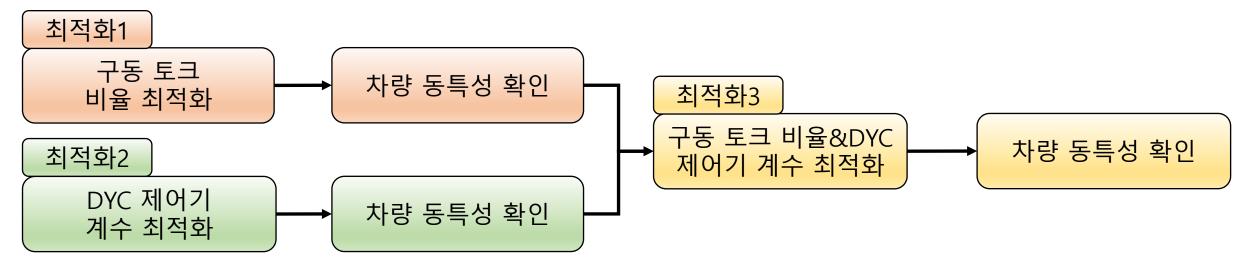








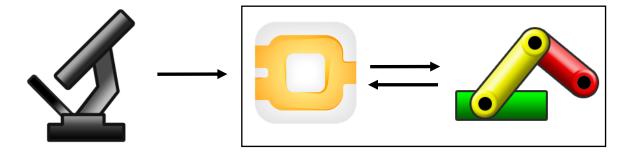
# 3. 최적설계

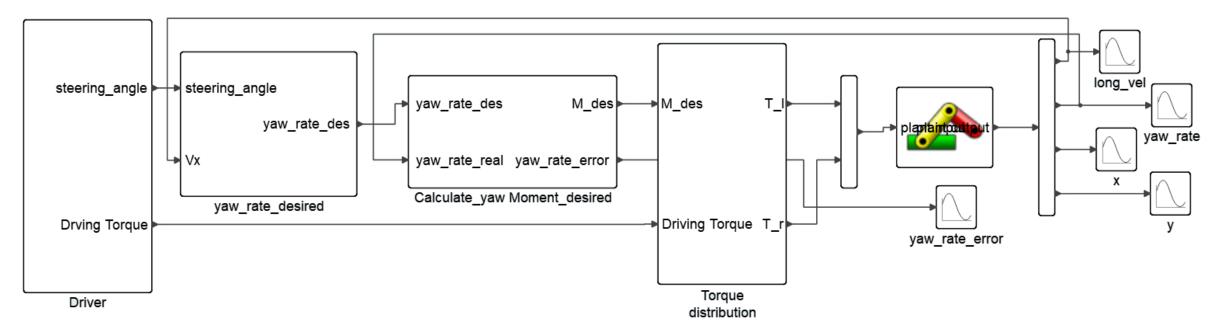

- 3.1 최적화 개요
- 3.2 DYC 알고리즘 설계
- 3.3 구동 토크 비율 & DYC
- 3.4 최적화 1 구동 토크 비율 최적화
- 3.5 최적화 2 DYC 알고리즘 최적화
- 3.6 최적화 3 구동 토크 비율 & DYC 알고리즘 최적화
- 3.7 최적화 해석 결과 비교





#### 3.1 최적화 개요


- 바퀴의 종방향 미끄러짐을 감소시키도록 설계
- 차량이 Under/Oversteer 하지 않도록 목표 Yaw Rate를 추종하도록 설계
- 회전반경을 줄일 수 있도록 설계
- 최적화 1은 종방향 미끄러짐을 감소시키도록 **구동 토크 비율 최적화**
- 최적화 2는 목표 Yaw Rate를 추종하도록 DYC 알고리즘(제어계수) 최적화
- 최적화 3은 위의 두가지 목적을 충족 시키도록 **구동 토크 비율 & DYC 알고리즘(제어계수) 최적화**






# 3.2 DYC 알고리즘 설계

- Activate를 이용해 DYC(Direct Yaw moment Control) 알고리즘 구현
- MotionSolve 와 Co-Simulation을 통해 MBD 해석
- Hyperstudy를 이용해 Co-Simulation을 최적화









# 3.3 구동 토크 비율 & DYC

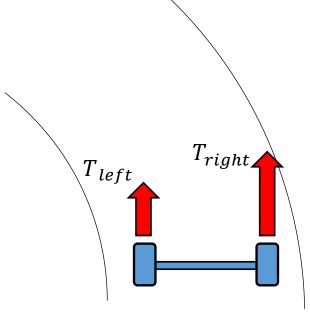
$$T_{drive} = T_{left} + T_{right}$$

■ 구동 토크 비율로 제어

$$T_{left} = Torque \ Ratio \times T_{drive}$$

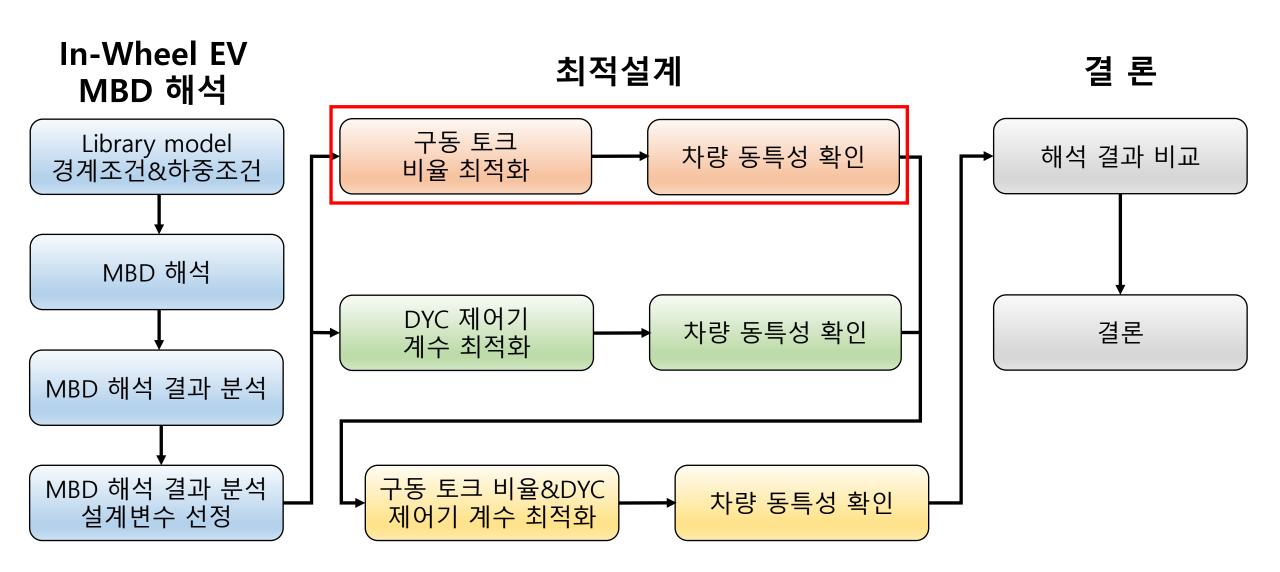
$$T_{right} = (1 - Torque Ratio) \times T_{drive}$$

■ 구동 토크 비율 & DYC 알고리즘으로 제어


$$T_{left} = Torque \ Ratio \times T_{drive} - \frac{M_{DYC} \times r}{d/2}$$

$$T_{right} = (1 - Torque Ratio) \times T_{drive} + \frac{M_{DYC} \times r}{d/2}$$

■ DYC 알고리즘으로 제어


$$T_{left} = 0.5 \times T_{drive} - \frac{M_{DYC} \times r}{d/2}$$

$$T_{right} = 0.5 \times T_{drive} + \frac{M_{DYC} \times r}{d/2}$$





#### 연구 절차





# 3.4 최적화 1 구동 토크 비율 최적화

- 안쪽 바퀴의 미끄러짐을 바깥쪽 바퀴의 미끄러짐만큼 감소
- 양쪽 바퀴의 종방향 미끄러짐의 합을 최소화

| 설계변수 | 토크 분배 비율 (Torque ratio)                                                          |
|------|----------------------------------------------------------------------------------|
| 목적함수 | 자, 우측 바퀴 종방향 미끄러짐 최소화 $RMS2 = \sum ((LongSlip_{left})^2 + (LongSlip_{right})^2)$ |
|      | $RMS2 = \sum_{time} ((LongSup_{left})^{-} + (LongSup_{right})^{-})$              |

$$T_{left} = Torque Ratio \times T_{drive}$$

$$LongSlip = -\frac{V_{x} - r_{e}\Omega}{V_{x}}$$

| 설계변수     | Lower Bound | Reference | Upper Bound |
|----------|-------------|-----------|-------------|
| 토크 분배 비율 | 0           | 0.5       | 1           |

- 토크 분배 비율은 0~1.0 을 갖는다.
- Reference는 구동 토크 비율의 차등이 없는 0.5로 선정



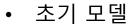


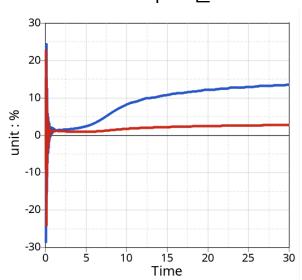
# 3.4 최적화 1 구동 토크 비율 최적화

■ 반응표면법(ARSM)을 이용한 최적화

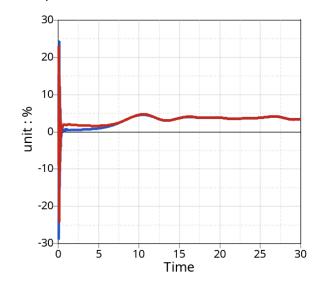


■ 최적화 결과 및 변화율


| 설계변수   | 좌우 토크 분배 비율     |
|--------|-----------------|
| 기존 모델  | 0.5000 : 0.5000 |
| 최적화 모델 | 0.2037 : 0.7963 |


- Adaptive Response Surface Method(ARSM)
- Number of Evaluations: 50
- Absolute Convergence: 0.001
- Relative Convergence: 1.000
- Input Variable Convergence: 0.001




# 3.4 최적화 1 구동 토크 비율 최적화 결과

■ 종방향 미끄러짐 LongSlip<sub>left</sub> LongSlip<sub>right</sub>

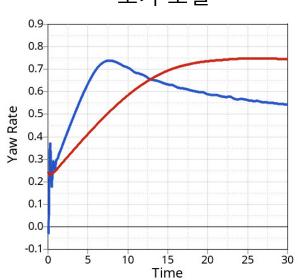




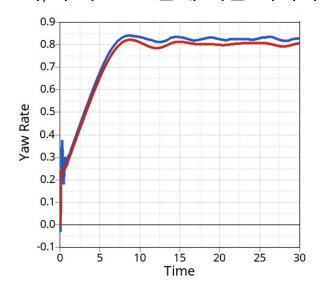
• 좌, 우측 토크 분배 비율 최적화 모델



- 안쪽 바퀴의 종방향 미끄러짐이 많이 감소함
- 안쪽, 바깥쪽 바퀴의 종방향 미끄러짐이 거의 일치하게 됨
- *RMS*2: 301610.18 → 27614 **90.84%** 감소




# 3.4 최적화 1 구동 토크 비율 최적화 결과


Yaw Rate Error

Yaw RateDesired Yaw Rate

• 초기 모델

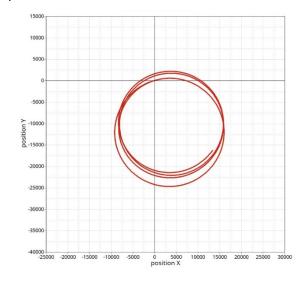


좌, 우측 토크 분배 비율 최적화 모델



- 초기 모델은 목표 Yaw Rate와 Yaw Rate가 서로 경향성이 없음
- 최적화 1 모델은 경향성이 거의 <mark>일치</mark>하며 Yaw Rate Error가 매우 작음
- *RMS*2: 446.63 → 2.014 **99.5%** 감소



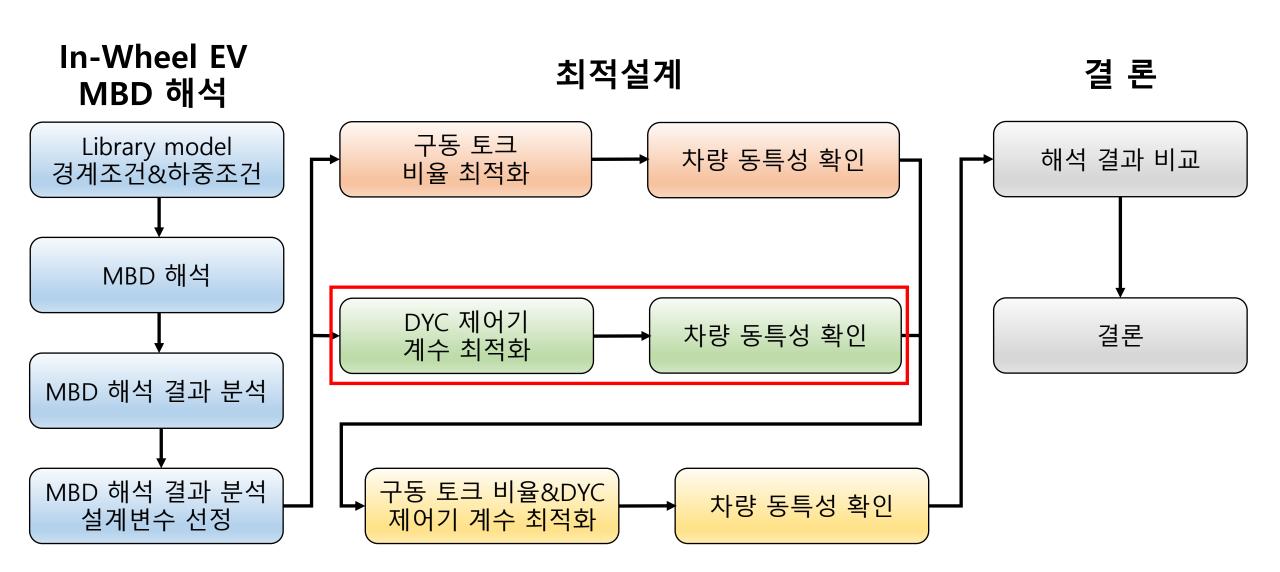



# 3.4 최적화 1 구동 토크 비율 최적화 결과

- **회전 반**경 *x* − *y position* 
  - 本기모델

    15000
    10000
    -5000
    -5000
    -20000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -25000
    -250

• 좌, 우측 토크 분배 비율 최적화 모델

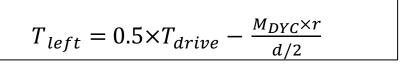


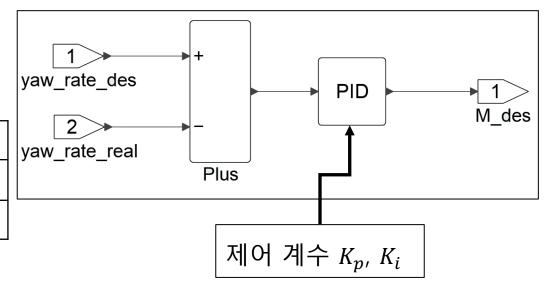

- **초기 모델**은 시험시간 30초 동안 수렴하지 못하지만 최적화 1 모델은 거의 수렴하며, 시험시간 30초에서의 회전반경이 많이 감소함
- 회전 반경: 25.12*m* → 13.44*m* 46.50% 감소





#### 연구 절차




# 3.5 최적화 2 DYC 알고리즘 최적화

| 설계변수 | PI 제어기 제어 계수 $K_p$ , $K_i$                                                          |
|------|-------------------------------------------------------------------------------------|
| 목적함수 | 목표 Yaw Rate에 대한 오차 최소화 $RMS2 = \sum_{time} (yaw \ rate_{desired} - yaw \ rate)^{2}$ |

| 설계변수       | Lower Bound | Reference | Upper Bound |
|------------|-------------|-----------|-------------|
| $K_p$      | 20          | 500       | 50000       |
| <i>K</i> : | 1           | 50        | 2500        |





- 전체 구동 토크인 500 N·m의 10%만큼을  $M_{DYC}$ 에 의한 구동토크로 가정
- $M_{DYC}$ 는 바퀴에서  $\frac{M_{DYC} \times r}{d/2}$ 의 구동토크로 변하고 초기모델의 Yaw Rate Error가 약 0.25이므로  $K_p$ = 500 일 때를 기준으로 선정

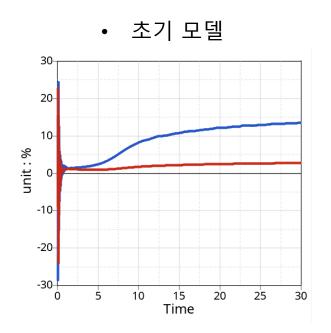


# 3.5 최적화 2 DYC 알고리즘 최적화

■ 반응표면법(ARSM)을 이용한 최적화



- Adaptive Response Surface Method(ARSM)
- Number of Evaluations: 50
- Absolute Convergence: 0.001
- Relative Convergence: 1.000
- Input Variable Convergence: 0.001


■ 최적화 결과 및 변화율

| 설계변수   | $K_p$  | $K_i$ |
|--------|--------|-------|
| 기존 모델  | 500    | 50    |
| 최적화 모델 | 661.25 | 52.9  |



# 3.5 최적화 2 DYC 알고리즘 최적화 결과

■ 종방향 미끄러짐 LongSlip<sub>left</sub> LongSlip<sub>right</sub>



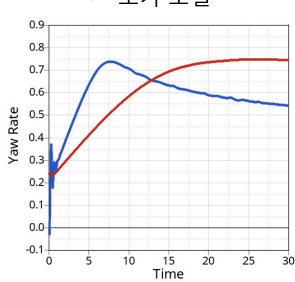
• DYC 알고리즘 최적화 모델

30
2010%: jiun
-10-20-30
0 5 10 15 20 25 30

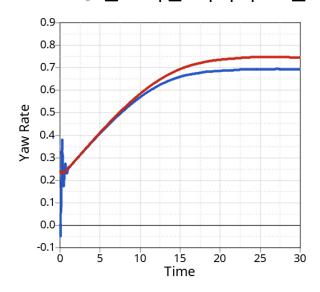
Time

- 안쪽 바퀴의 종방향 미끄러짐이 많이 감소함
- 하지만 최적화 1 처럼 안쪽 바퀴와 바깥쪽 바퀴의 미끄러짐 정도가 일치하지는 않음
- *RMS*2: 301610.18 → 73571 **87.66**% 감소






# 3.5 최적화 2 DYC 알고리즘 최적화 결과


Yaw Rate Error

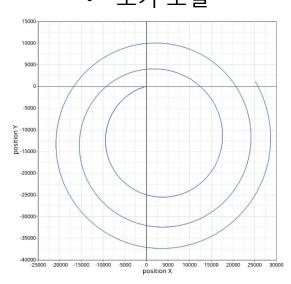
Yaw RateDesired Yaw Rate

• 초기모델

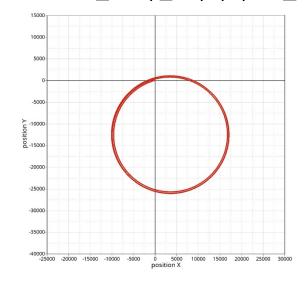


• DYC 알고리즘 최적화 모델




- 최적화 2 모델의 경우 정상상태 오차가 존재
- 목표 Yaw Rate와 Yaw Rate가 서로 경향성이 있음
- *RMS*2: 446.63 → 4.51 **98.99%** 감소

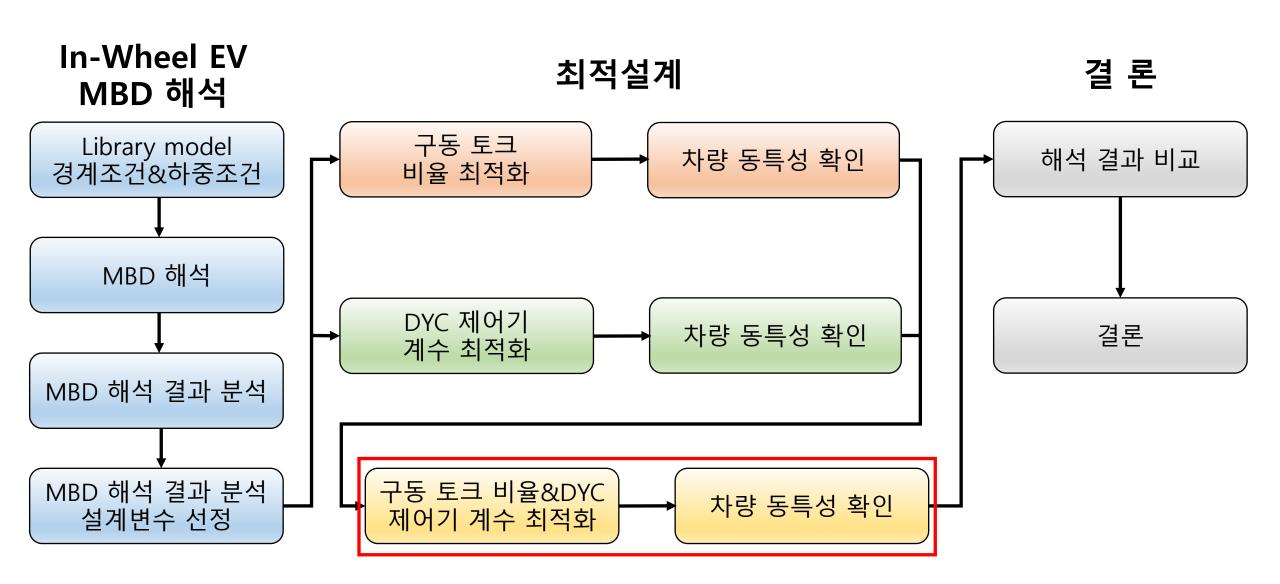





## 3.5 최적화 2 DYC 알고리즘 최적화 결과

- **회전** 반경 *x y position* 
  - 초기 모델




• DYC 알고리즘 최적화 모델



- 최적화 1 모델보다 선회 반경이 더 많이 수렴함
- 회전 반경: 25.12*m* → 13.56*m* **46.02**% 감소



## 연구 절차





# 3.6 최적화 3 구동 토크 비율 & DYC 알고리즘 최적화

| 설계변수 | 토크 분배 비율, PI 제어기 제어 계수 $(K_p, K_i)$                          |
|------|--------------------------------------------------------------|
|      | 목표 Yaw Rate에 대한 오차 최소화                                       |
| 목적함수 | $RMS2 = \sum_{time} (yaw \ rate_{desired} - yaw \ rate)^{2}$ |

$$T_{left} = Torque \ Ratio \times T_{drive} - \frac{M_{DYC} \times r}{d/2}$$
 
$$T_{right} = (1 - Torque \ Ratio) \times T_{drive} + \frac{M_{DYC} \times r}{d/2}$$


| 설계변수     | Lower Bound | Reference | Upper Bound |
|----------|-------------|-----------|-------------|
| $K_p$    | 20          | 500       | 50000       |
| $K_i$    | 1           | 50        | 2500        |
| 토크 분배 비율 | 0           | 0.5       | 1           |

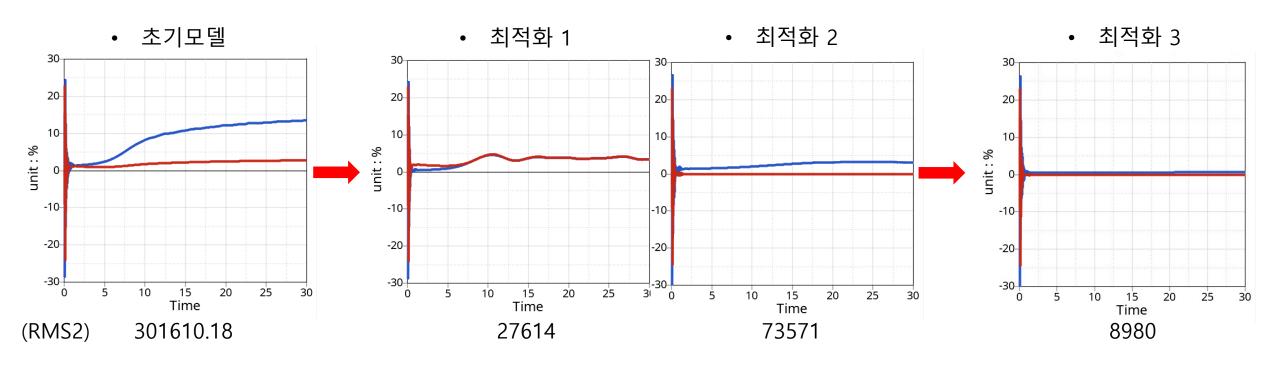
■ 설계변수와 설계 범위는 최적화 2 와 동일하게 선정



## 3.6 최적화 3 구동 토크 비율 & DYC 알고리즘 최적화

■ 반응표면법(ARSM)을 이용한 최적화




| 설계변수   | $K_p$  | $K_i$ | 토크 분배 비율      |
|--------|--------|-------|---------------|
| 기존 모델  | 500    | 50    | 0.5000:0.5000 |
| 최적화 모델 | 592.70 | 49.27 | 0.1999:0.8001 |

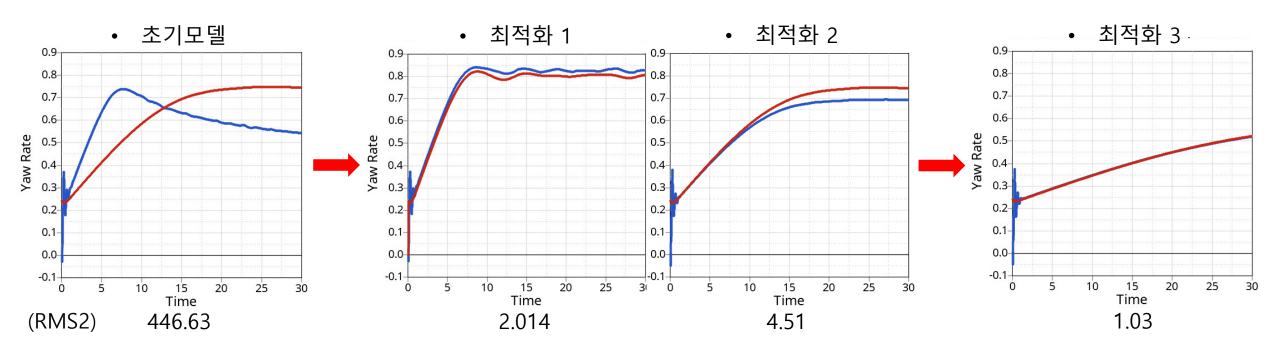
- Adaptive Response Surface Method(ARSM)
- Number of Evaluations: 50
- Absolute Convergence: 0.001
- Relative Convergence: 1.000
- Input Variable Convergence: 0.001



# 3.6 최적화 3 구동 토크 비율 & DYC 알고리즘 최적화 결과

- 종방향 미끄러짐 LongSlip<sub>left</sub> LongSlip<sub>right</sub>




- 최적화 1의 경우 목표 종방향 미끄러짐이 약간 진동하는 경향이 있음
- 최적화 2는 종방향 미끄러짐을 잘 개선하긴 하지만 안쪽, 바깥쪽이 서로 일치하진 않음
- 최적화 3의 경우 종방향 미끄러짐이 더 개선되었고 양쪽이 거의 일치하며, 진동하지 않음

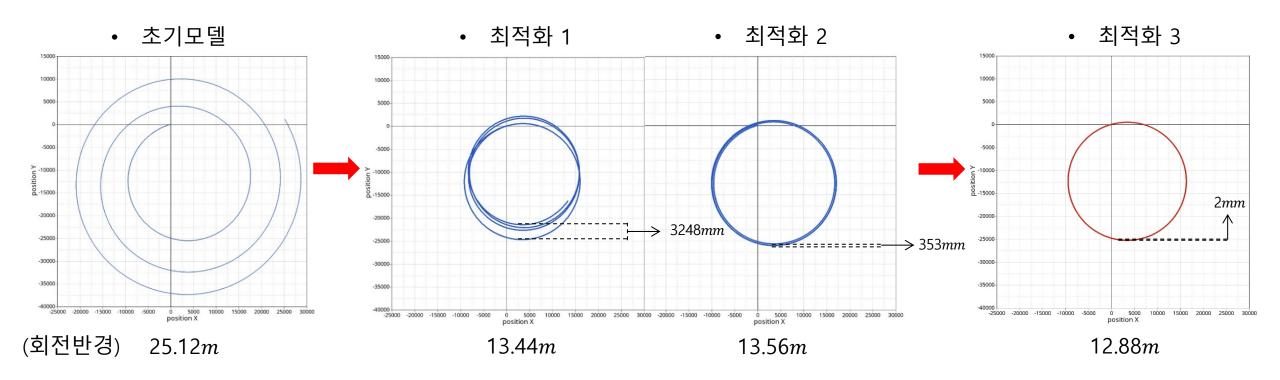




## 3.6 최적화 3 구동 토크 비율 & DYC 알고리즘 최적화 결과

Yaw Rate
 Desired Yaw Rate




- 최적화 1, 2, 3 모두 목표 Yaw Rate와 Yaw Rate가 같은 경향성을 가짐
- **최적화 1**의 경우 목표 Yaw Rate와 Yaw Rate가 **진동**하는 경향이 있음
- 최적화 2가 진동하지 않는 이유는 매 순간 적절한 제어를 하는 PI 제어이기 때문으로 판단됨
- **최적화 3**의 경우 목표 Yaw Rate와 Yaw Rate가 **진동하지 않으며 거의 수렴**함





## 3.6 최적화 3 구동 토크 비율 & DYC 알고리즘 최적화 결과

■ **회전 반경** *x - y position* 

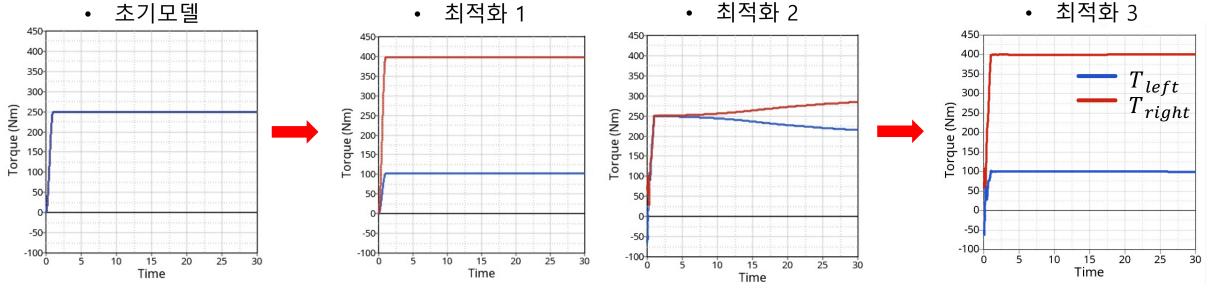


• 최적화 1, 2 모델 보다 최적화 3 모델은 회전반경이 더 감소하였으며, 수렴율도 더 높음



#### 3.7 최적화 해석 결과 비교

- 구동 토크 비율과 DYC 알고리즘 제어계수를 모두 고려한 최적화 3이 종방향 미끄러짐, Under/Oversteer, 선회반경이 모두 가장 잘 개선됨
- 선회 시에 **안쪽 바퀴가 하중이 덜 작용해서 미끄러지는 현상**과 바**깥쪽 바퀴가 안쪽 바퀴보다 회전이 더 많아야 하는 원리**를 이용해, **종방향 미끄러짐을 개선**
- Under/Oversteer 현상을 목표 Yaw Rate 추종을 통해 개선하는 DYC 알고리즘을 적용해 Yaw Rate Error 와
   회전 반경을 개선


|                | 초기 모델          | 최적화 1                               | 최적화 2                       | 최적화 3                        |
|----------------|----------------|-------------------------------------|-----------------------------|------------------------------|
| LongSlip       | 301610.18      | 27614 ( <b>90.84% 감소</b> )          | 73571 ( <b>87.66% 감소</b> )  | 8980 ( <b>97.02% 감소</b> )    |
| Yaw Rate Error | 446.63         | 2.014 ( <b>99.5% 감소</b> )           | 4.51 ( <b>98.99% 감소</b> )   | 1.03 ( <b>99.77% 감소</b> )    |
| 회전 반경          | 25.12 <i>m</i> | 13.44 <i>m</i> ( <b>46.50% 감소</b> ) | 13.56m ( <b>46.02% 감소</b> ) | 12.88 m ( <b>48.73% 감소</b> ) |





#### 3.7 최적화 해석 결과 비교

## ■ 좌우 바퀴 구동 토크 (T<sub>left</sub>, T<sub>right</sub>)



| 설계 변수 | 토크 분배 비율        | $K_p$  | $K_i$ |
|-------|-----------------|--------|-------|
| 초기 모델 | 0.5000 : 0.5000 | 0      | 0     |
| 최적화 1 | 0.2037 : 0.7963 | 0      | 0     |
| 최적화 2 | 0.5000 : 0.5000 | 661.25 | 52.9  |
| 최적화 3 | 0.1999 : 0.8001 | 592.70 | 49.27 |

- $T_{right}$  = 400 N·m 에 거의 수렴하여 안정적인 제어가 가능함
- 최적화 1과 정상 상태에서 구동 토크가 유사하게 보이지만 차량 동특성은 더 개선된 결과를 가짐



# 4. 결 론

- 결 론
- 참고문헌



#### 4. 결 론

- In-Wheel EV의 구동 토크 제어기 설계 수행
- Library Full Vehicle을 이용해 In-Wheel EV에 적합하게 재구성
- MBD 해석을 이용해 In-Wheel EV 선회 성능 해석
- **차량동역학** 내용을 고려해 설계 수행
- DYC **알고리즘 제어기** 구현 및 설계
- 좌, 우 바퀴별 **종방향 미끄러짐의 최소화**를 위한 **구동 토크 비율 최적화**
- 목표 Yaw Rate 추종을 통해 Under/Oversteer를 방지하는 제어기 최적화
- 구동 토크 배분 후 DYC 알고리즘을 적용하여 더 개선된 선회 성능을 확인함
- 초기 모델 대비 (좌, 우 동일 토크 배분)

LongSlip **97.02%** 감소 (*RMS*2: 301610.18 → 8980)

Yaw Rate Error **99.77**% 감소 (*RMS*2: 446.63 → 1.03)

회전 반경 **48.73%** 감소 (25.12*m* → 12.88*m*)





## 참고문헌

① Tilt Type Steering Column의 Tilt Angle에 따른 Steering Ratio Variation에 관한 연구 정우준, 김국태, 오정용, 박수용 (2010) 한국자동차공학회 추계학술대회 및 전시회, 2010.11

① Steering Ratio 결과가 합리적인지 참고

2 Tyre and Vehicle Dynamics. Hans Pacejka (2012). Butterworth-Heinemann. P. 469

② 종방향 미끄러짐에 관한 정리 참고

③ 차량동역학 Vehicle dynamics : an introduction. 박보용, 허승진 공저

**■■●** ③ **횡방향 차량동역학** 정리 참고

4 The Control Strategy of Electronic Differential for EV with Four In-wheel Motors 2010 Chinese Control and Decision Conference ● **④ DYC 알고리즘** 적용 참고

⑤ 인휠 시스템 너클 최적화 설계. 전진무, 민경휘, 김여정, 김동현 (2018). 한국자동차공학회 추계학술대회 및 전시회, 1155-1158

⑤ **구동 토크 부여** 시 **너클이 반력**을 받는 것이 합리적인지 참고



# 감사합니다