Altair Optimization Contest 2022

전기자동차 인버터의 냉각 성능 개선 및 압력 강하 저감을 위한 히트 싱크 최적설계

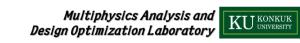
팀 명: 인턴

건국대학교 기계공학부

김동우, 이하민

지도교수: 김창완 교수님

2022. 8. 31.



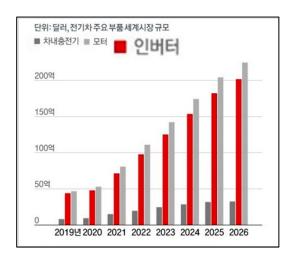
Contents

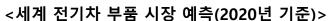
- 1. 서론
- 1.1 연구 개요
- 1.2 연구 목표
- 1.3 해석 절차
- 2. 인버터 열 유동 해석
- 2.1 열 유동 해석 개요
- 2.2 지배 방정식
- 2.3 해석 모델
- 2.4 초기 모델에 대한 열 유동 해석
- 2.5 설계 인자 선정을 위한 Case Study
- 3. 냉각 성능 및 압력 강하에 대한 히트 싱크 최적화
- 3.1 최적 설계 개요
- 3.2 최적화 Process in HyperStudy
- 3.3 실험계획법을 이용한 민감도 분석
- 3.4 1차 최적 설계 최고 온도 최소화
- 3.5 2차 최적 설계 압력 강하 최소화
- 3.6 최적화 결과
- 4. 결론
- 4.1 결론

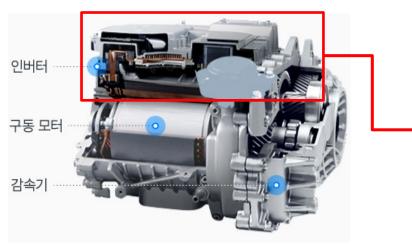
Contents

- 1. 서론
- 1.1 연구 개요
- 1.2 연구 목표
- 1.3 해석 절차
- 2. 인버터 열 유동 해석
- 2.1 열 유동 해석 개요
- 2.2 지배 방정식
- 2.3 해석 모델
- 2.4 초기 모델에 대한 열 유동 해석
- 2.5 설계 인자 선정을 위한 Case Study
- 3. 냉각 성능 및 압력 강하에 대한 히트 싱크 최적화
- 3.1 최적 설계 개요
- 3.2 최적화 Process in HyperStudy
- 3.3 실험계획법을 이용한 민감도 분석
- 3.4 1차 최적 설계 최고 온도 최소화
- 3.5 2차 최적 설계 압력 강하 최소화
- 3.6 최적화 결과

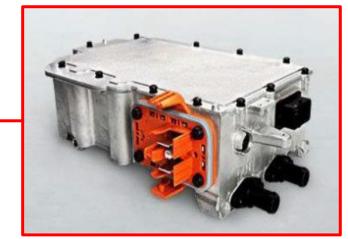
4. 결론


4.1 결론




1.1 연구 개요

▶ 연구 배경


- 세계 각 국의 연비 규제가 심화됨에 따라 전기차의 수요가 상승
- 전기차의 수요가 상승하면서 전기차 Power Electric System의 주요 구성품인 인버터 개발의 중요도가 커짐
- 인버터는 스위칭 소자인 IGBT와 정류 소자인 Diode를 이용해 배터리 직류 전원을 3상 교류 전원으로 변환
- 인버터의 **고효율화**, **고출력화** 요구가 지속되고 있음

<전기차 PE 시스템>

<전기차 인버터>

1.1 연구 개요

▶ 연구 배경

- 🗕 IGBT 및 Diode에서 저항에 의해 발생하는 도통 손실과 On-Off 시 발생하는 스위칭 손실에 의한 **열 발생**
- 일반적으로 IGBT와 Diode는 398 K (125 °C)의 내열 한계*를 가짐
- IGBT와 Diode의 전기적 손실에 의한 발열이 내열 한계 이상의 고온을 발생시켜 인버터의 고장 원인이 됨
- 대부분 인버터의 경우 수냉식 히트 싱크를 사용하여 인버터를 냉각시킴

가	차명	G80 ELECTRIFIED (RG3 EV)
-	2.2.1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	
나	제작년월일	'21. 9. 7 ~ '21. 9. 9
다		원동기 및 동력전달장치 / 인버터
	결함장치 또는 부품	[III 25]
		G80 ELECTRIFIED (RG3 EV) [구동 모듈] [인버터]
		※ 인버터 : 구동 모터를 동작하기 위해 고전압배터리의 직류 전압을 교류전압으로 바꿔주는 장치 ※ 파워모듈 : 3상 전류를 구동모터에 공급하는 장치
라	결함원인	인버터 내 파워모듈 내부 소자 소손

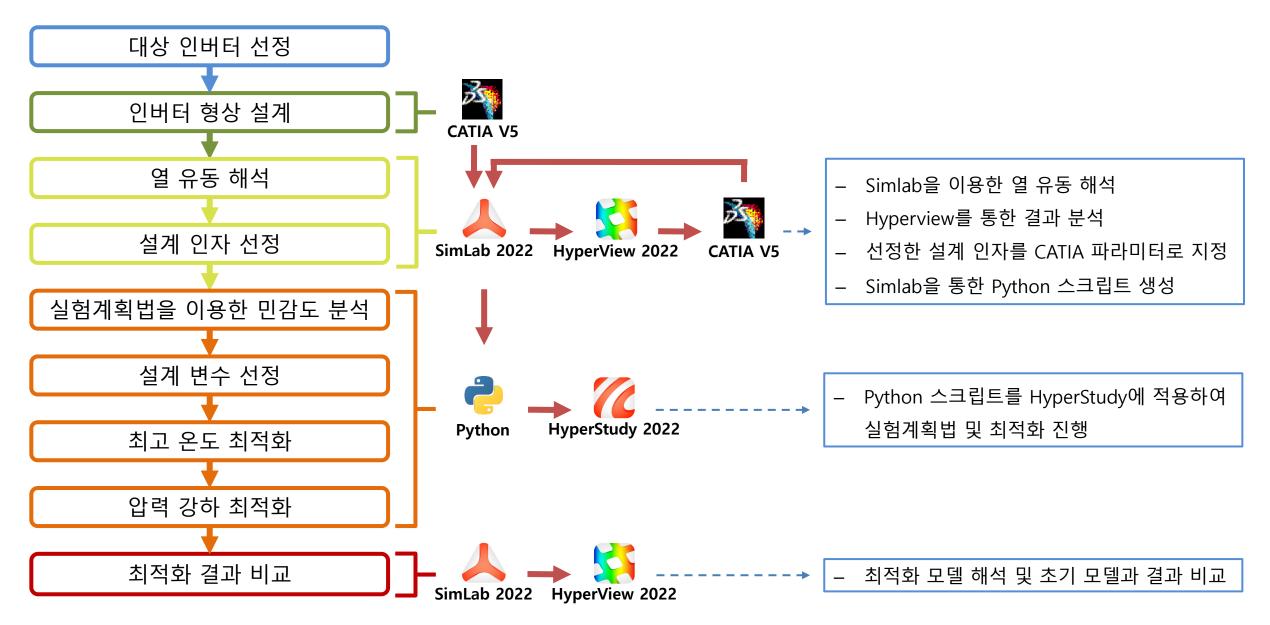
<전기차 인버터 내부 소자 소손(열에 의한 고장)으로 인한 리콜 안내, 현대>

1.1 연구 개요

▶ 연구 배경

- 히트 싱크의 형상 설계를 통해 냉각 성능 개선이 지속 요구 되고 있으며 이것은 히트 싱크 압력 강하 증가로 이어짐
- 냉각 수로에서의 압력 강하 증가는 워터 펌프의 펌핑 파워 증가로 이어져 동력 손실을 발생 시킴
- 대부분의 선행연구에서 인버터 냉각 성능과 냉각수 압력 강하의 Trade-off* 관계를 고려하지 않음
- 히트 싱크는 냉각 성능 최대화와 압력 강하 최소화라는 상반된 성능을 동시에 만족시켜야 함

인버터 냉각 성능 개선 및 냉각수 압력 강하 저감을 위한 히트 싱크 최적 설계 필요


1.2 연구 목표

▶ 열 유동 해석을 통해 인버터 최고 온도 및 냉각수 압력 강하 계산

▶ 실험계획법을 통해 인버터의 최고 온도 및 냉각수 압력 강하에 영향을 주는 히트 싱크 설계 변수 선정

▷ 인버터의 냉각 성능 개선 및 냉각수 압력 강하 저감을 위한 히트 싱크 형상 최적화

1.3 해석 절차

Contents

1. 서론

- 1.1 연구 개요
- 1.2 연구 목표
- 1.3 해석 절차

2. 인버터 열 유동 해석

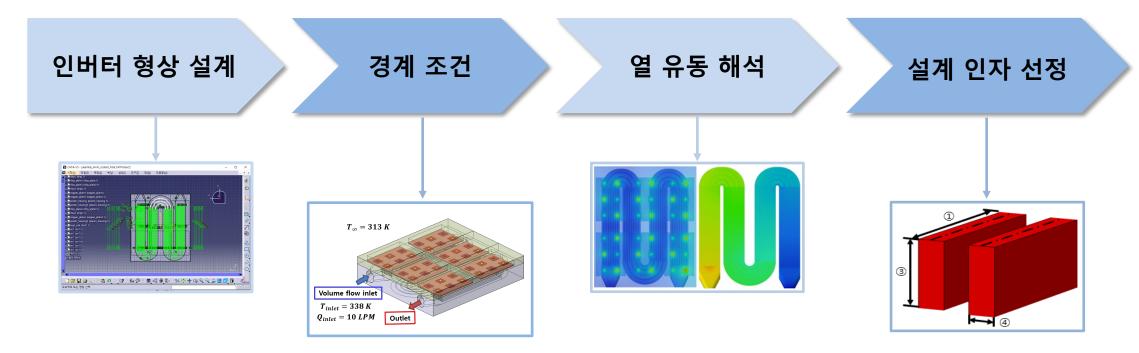
- 2.1 열 유동 해석 개요
- 2.2 지배 방정식
- 2.3 해석 모델
- 2.4 초기 모델에 대한 열 유동 해석
- 2.5 설계 인자 선정을 위한 Case Study

3. 냉각 성능 및 압력 강하에 대한 히트 싱크 최적화

- 3.1 최적 설계 개요
- 3.2 최적화 Process in HyperStudy
- 3.3 실험계획법을 이용한 민감도 분석
- 3.4 1차 최적 설계 최고 온도 최소화
- 3.5 2차 최적 설계 압력 강하 최소화
- 3.6 최적화 결과

4. 결론

4.1 결론



2.1 열 유동 해석 개요

▶ 열 유동 해석 목적

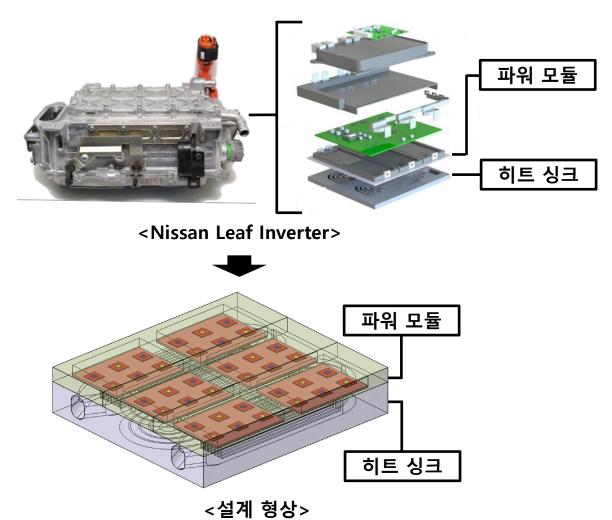
- 인버터의 주 발열원인 IGBT, Diode의 온도 및 냉각수 압력 강하 계산
- 인버터의 최고 온도 및 냉각수 압력 강하에 영향을 미치는 **설계 인자** 선정

▶ 열 유동 해석 절차

2.2 지배 방정식

▶ 연속 방정식: 질량 보존을 의미하며, 연속적인 유체의 운동을 나타내기 위해 필요

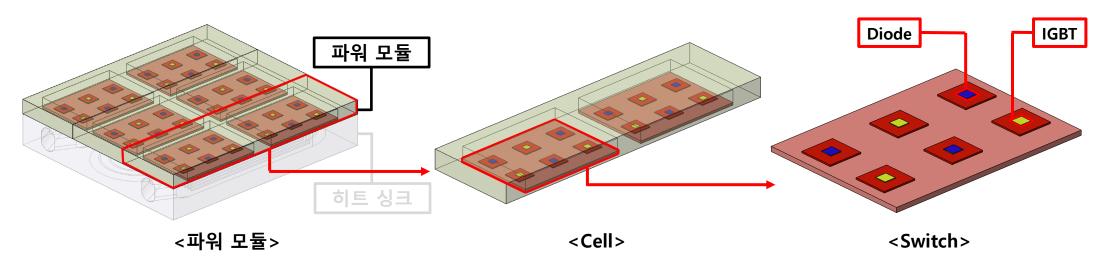
$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{u}) = 0$$


> 운동량 방정식: 운동량 보존을 의미하며, 유체의 운동에서 외력의 영향을 나타내기 위해 필요

$$\rho \frac{\partial u}{\partial t} + (\rho \vec{u} \cdot \nabla) \vec{u} = -\nabla p + \rho + \nabla \cdot \tau$$

> 에너지 방정식: 에너지 보존을 의미하며, 열 전달을 계산하기 위해 필요

$$\rho c_p \frac{DT}{Dt} = \frac{Dp}{Dt} + \nabla \cdot (k\nabla T) + \nabla \vec{u} \cdot \tau + S$$

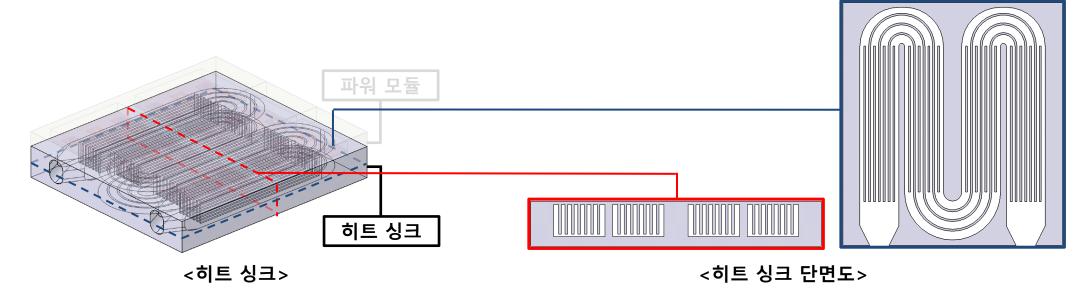

> 해석 모델: Nissan Leaf(2012) Inverter

- 해석을 위해 모델을 단순화
- 주 발열원인 IGBT, Diode가 포함된 파워 모듈과
 냉각이 이루어지는 히트 싱크에 대하여 해석 수행
- CATIA를 이용하여 3D 형상 설계

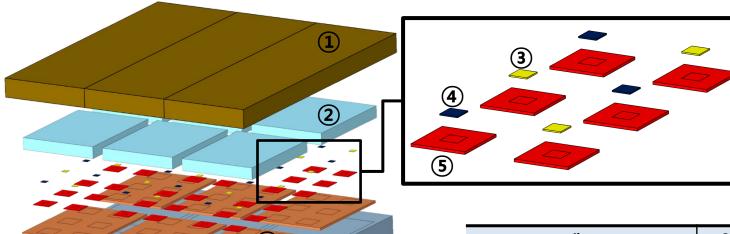
▶ 인버터 파워 모듈

- 파워 모듈 = Cell X 3 , Cell = Switch X 2 , Switch = Diode X 3 + IGBT X 3
- IGBT, Diode에서 도통 손실* 및 스위칭 손실*로 인한 발열 발생
 *도통 손실: IGBT, Diode에 전류가 흐를 때 저항 성분에 의해 발생하는 손실
 *스위칭 손실: 스위치 소자가 On-Off 시 발생하는 손실

* Zhao, Tiefu, et al. "Comparisons of SiC MOSFET and Si IGBT based motor drive systems." 2007 IEEE Industry Applications Annual Meeting. IEEE, 2007.



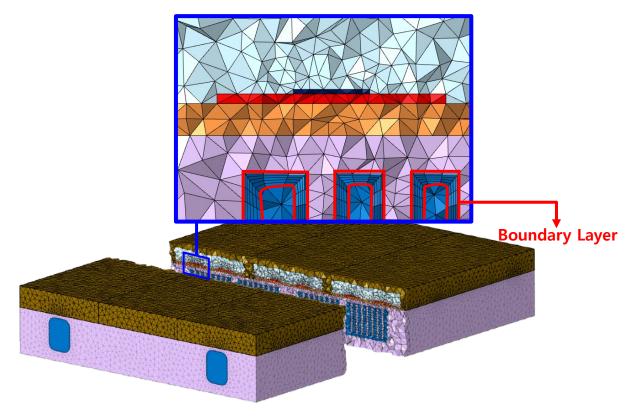
▶ 인버터 히트 싱크


- 냉각수를 통해 파워 모듈에서 발생하는 열 방출
- 효율적인 열 교환을 위해 냉각 Fin을 적용하여 냉각수와 히트 싱크의 접촉 면적을 늘림
- 히트 싱크 냉각 Fin 형상 치수는 Nissan Leaf(2012) Inverter 기반

• Fin-개수: 7 개 • 유로 폭: 40 mm • Fin-높이: 23 mm

• Fin-두께: 2 mm • (입·출구 인근 직선 구간) Fin-길이: 160 mm

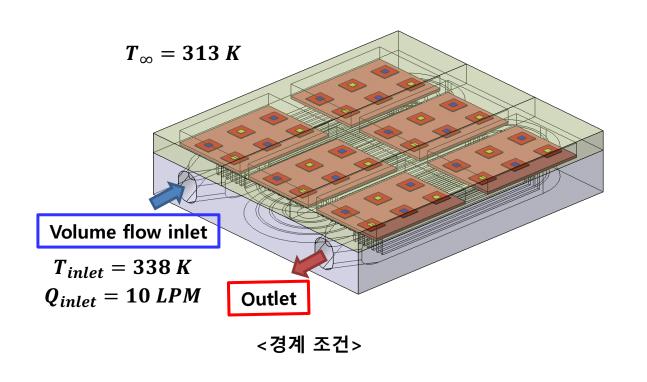
> 인버터 구성 및 물성치


	구성품	재질
1	Housing	Plastic
2	Air	Air
3	IGBT	SiC
4	Diode	SiC
5	Buffer Plate	Copper-Moly
6	Copper Plate	Copper
7	Heat Sink	Aluminum
8	Coolant	50/50 Ethylene Glycol

재료	열전도율 [W/m·K]	비열 [J/kg·K]	밀도 [kg/m³]
Plastic	0.34	1250	1800
Air	0.026	1005	1.225
Copper	387	385	8933
Aluminum	180	896	2700
50/50 Ethylene Glycol	0.4108	3499	1050.44
SiC	270	675	3160
Copper-Moly	160	270	9850

<인버터 구성>

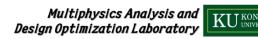
▶ 인버터 유한요소 모델



<유한요소 모델 단면>

- Node 수: 2,211,342 개
- Element 종류: Tetrahedral
- 3D Element 개수: 7,300,535 개
- 유체 부분은 벽면과의 마찰을 고려하여5층의 Boundary Layer 생성

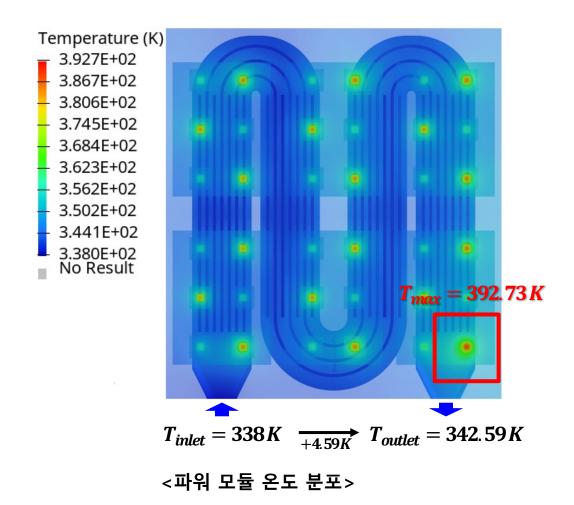
▶ 인버터 유한요소 모델 경계조건


- - 냉각수 온도와 입력 유량은 Nissan Leaf 인버터의

 작동 조건* 적용
- 보수적 설계를 위해 주변 온도는 여름철 기온 적용
- 소자 손실은 Nissan Leaf 인버터에 대해 해석을 진행한
 논문*에서 사용한 손실 적용

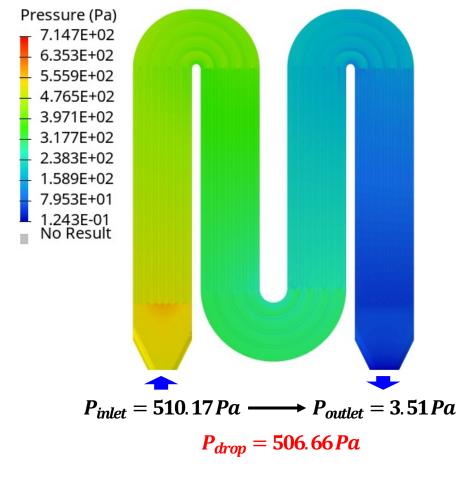
IGBT 수 (개)	18
IGBT 당 손실 (W)	86.83
Diode 수 (개)	18
Diode 당 손실 (W)	28.94

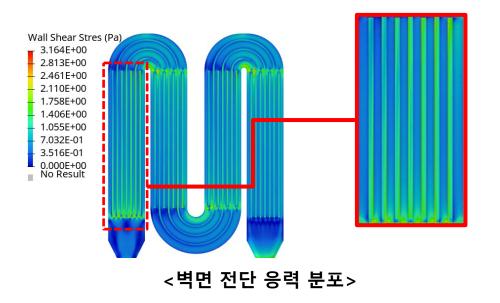
^{*} 출처: SATO, Yoshinori, et al. "Development of high response motor and inverter system for the Nissan LEAF electric vehicle",SAE Technical Paper, 2011.



^{*} 출처: G. Moreno, et al. "Evaluation of performance and opportunities for improvements in automotive power electronics systems", 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016.

2.4 초기 모델에 대한 열 유동 해석


▶ 온도 분포


- 최고 온도는 손실이 큰 발열원인 IGBT에서 발생
- IGBT, Diode의 최고 온도는 내열 한계 이하
- 냉각수의 입·출구 온도변화가 발생하는 것으로
 히트 싱크를 통한 냉각이 이루어짐을 알 수 있음

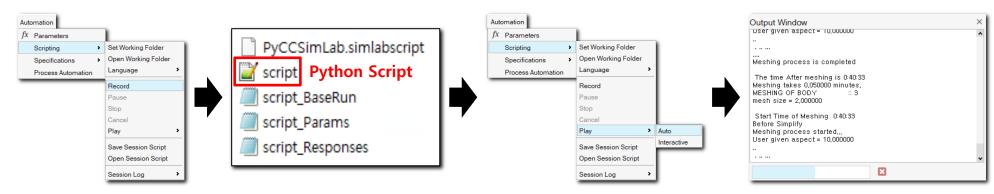
2.4 초기 모델에 대한 열 유동 해석

▶ 압력 및 벽면 전단 응력 분포

<냉각수 압력 분포>

- 유로의 단면적이 좁고, 냉각 Fin과의 접촉 면적이
 넓은 곳에서 벽면 전단 응력이 집중
- 냉각수의 압력은 **벽면 전단 응력**이 크게 발생하는
 냉각 Fin 사이를 지날 때 뚜렷하게 **감소**함

유로의 단면적과 냉각 Fin의 면적이 최고 온도 및 압력 강하에 영향을 주는지 Case Study를 통해 확인


- Case Study
 - 유로 단면적 · Fin 면적이 변하는 Case들에 대한 열 유동해석으로 압력 강하 및 최고 온도에 대한 영향 확인
- > Simlab 자동화 Script를 이용한 Case Study 반복 해석
 - 냉각 Fin 면적에 영향을 주는 Fin 길이&Fin 높이, 유로 단면적에 영향을 주는 Fin 두께&유로 폭을 파라미터로 지정

CATIA에서 파라미터 생성 SimLab으로 Import한 CATIA 파일의 파라미터 연동

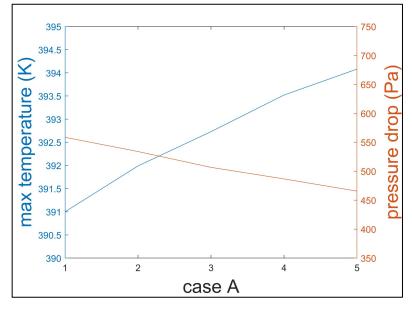
SimLab에서 치수 수정/적용

- SimLab에서 Automation 기능을 이용하여 Script 생성 및 재생으로 Case 별 해석 반복 자동화

➤ Case A: 냉각 Fin 면적 감소에 따른 결과

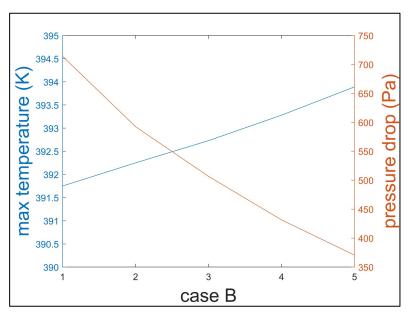
- 냉각 Fin 면적에 영향을 미치는 Fin 길이와 Fin 높이를 변화시키며 결과 확인
- Case가 진행됨에 따라 냉각 Fin 면적은 감소

	Case A-1	Case A-2	Case A-3	Case A-4	Case A-5
	Fin 길이: 165 mm Fin 높이: 24 mm	Fin 길이: 162.5 mm Fin 높이: 23.5 mm	Fin 길이: 160 mm Fin 높이: 23 mm	Fin 길이: 157.5 mm Fin 높이: 22.5 mm	Fin 길이: 155 mm Fin 높이: 22 mm
Temperature (K) 394.08E+00 387.85E+00 381.62E+00 375.39E+00 369.16E+00 362.93E+00 356.69E+00 350.46E+00 344.23E+00 No Result	최고 온도: 391.00 K	최고 온도: 391.99 K	최고 온도: 392.73 K	최고 온도: 393.52 K	최고 온도: 394.08 K
Pressure (Pa) 735.70E+00 653.96E+00 572.21E+00 490.47E+00 326.98E+00 245.23E+00 163.49E+00 81.74E+00 0.00E+00 No Result	압력 강하: 558.59 Pa				압력 강하: 465.59 Pa


➤ Case B: 유로 단면적 증가에 따른 결과

- 유로 단면적에 영향을 미치는 Fin 두께와 유로 폭을 변화시키며 결과 확인
- Case가 진행됨에 따라 유로 단면적은 증가

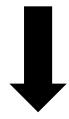
	Case B-1	Case B-2	Case B-3	Case B-4	Case B-5
	Fin 두께: 2.4 mm 유로 폭: 39.2 mm	Fin 두께: 2.2 mm 유로 폭: 39.6 mm	Fin 두께: 2 mm 유로 폭: 40 mm	Fin 두께: 1.8 mm 유로 폭: 40.4 mm	Fin 두께: 1.6 mm 유로 폭: 40.8 mm
Temperature (K) 393.28E+00 387.13E+00 380.99E+00 374.85E+00 368.71E+00 362.57E+00 356.42E+00 350.28E+00 344.14E+00 338.00E+00 No Result	최고 온도: 391.75 K	최고 온도: 392.25 K	최고 온도: 392.73 K	최고 온도: 393.28 K	최고 온도: 393.89 K
Pressure (Pa) 901.28E+00 801.14E+00 701.00E+00 600.85E+00 500.71E+00 400.57E+00 300.43E+00 200.28E+00 100.14E+00 No Result	압력 강하: 714.16 Pa	압력 강하: 592.50 Pa	압력 강하: 506.66Pa	압력 강하: 431.54 Pa	압력 강하: 370.64 Pa



▶ 냉각 Fin 면적과 유로 단면적의 변화에 따른 결과 분석

<냉각 Fin 면적 감소에 따른 결과>

냉각 Fin 면적 → 최고 온도 1 압력 강하


<유로 단면적 증가에 따른 결과>

유로 단면적 ↑→ 최고 온도 1 압력 강하

- 냉각 Fin의 면적과 유로의 단면적이 최고 온도와 압력 강하에 영향을 주는 것을 확인
- 냉각 Fin의 면적과 유로 단면적에 대해 최고 온도와 압력 강하는 Trade-off 관계

▶ 해석 결과 분석

- 생각 Fin의 면적을 감소시키거나 유로의 단면적을 증가시킴으로 압력 강하 저감 효과 확인
- 냉각 Fin의 면적을 증가시키거나 유로의 단면적을 감소시키는 것은 최고 온도를 감소시킴
- 인버터에서 냉각 Fin 면적과 유로 단면적에 대해 소자 최고 온도와 냉각수 압력 강하는 Trade-off 관계

냉각 Fin 면적 및 유로 단면적을 조정하여 최고 온도 및 압력 강하 개선

Contents

1. 서론

- 1.1 연구 개요
- 1.2 연구 목표
- 1.3 해석 절차

2. 인버터 열 유동 해석

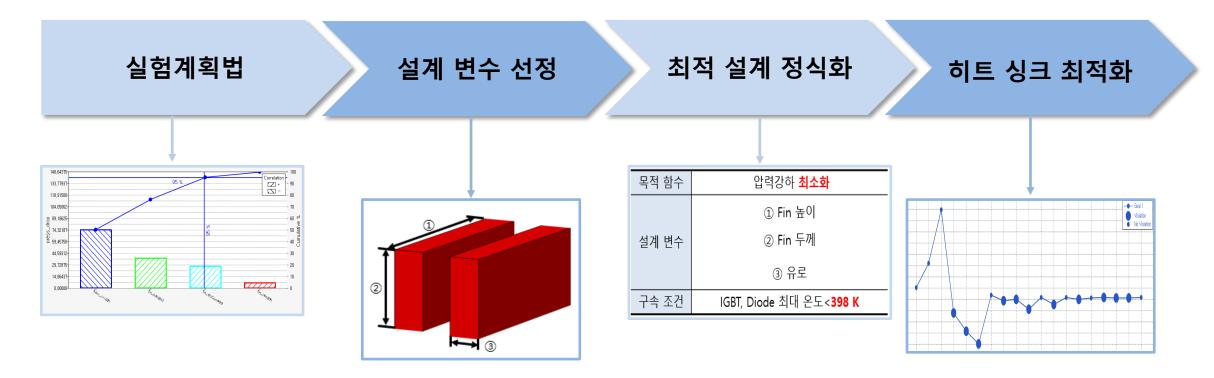
- 2.1 열 유동 해석 개요
- 2.2 지배 방정식
- 2.3 해석 모델
- 2.4 초기 모델에 대한 열 유동 해석
- 2.5 설계 인자 선정을 위한 Case Study

3. 냉각 성능 및 압력 강하에 대한 히트 싱크 최적화

- 3.1 최적 설계 개요
- 3.2 최적화 Process in HyperStudy
- 3.3 실험계획법을 이용한 민감도 분석
- 3.4 1차 최적 설계 최고 온도 최소화
- 3.5 2차 최적 설계 압력 강하 최소화
- 3.6 최적화 결과

4. 결론

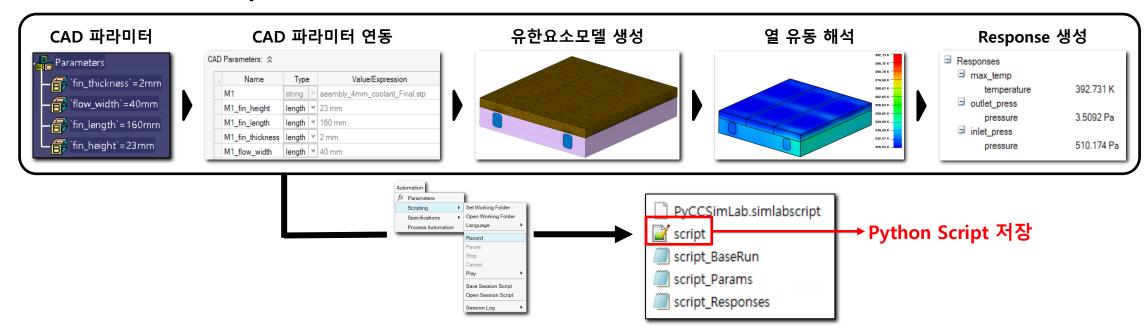
4.1 결론



3.1 최적 설계 개요

▶ 최적 설계 목적

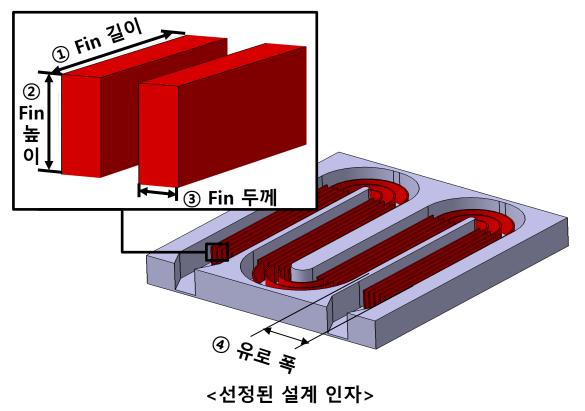
- 인버터의 **냉각 성능** 개선을 위해 초기 모델에 대하여 **1차 최적화**
- 인버터의 압력 강하 감소를 위해 1차 최적화 모델에 대하여 2차 최적화


▶ 최적 설계 절차



3.2 최적화 Process in HyperStudy

SimLab 자동화 Script


➤ SimLab에서 생성한 자동화 Script를 HyperStudy에 적용

정의한 Response

- 실험계획법: 적은 실험 횟수로 최대한의 정보를 얻기 위해 실험을 계획
 - FFD (Full Factorial Design): 설계 인자 수준의 가능한 모든 조합을 평가하는 DoE Method
- ▶ 설계 인자 선정

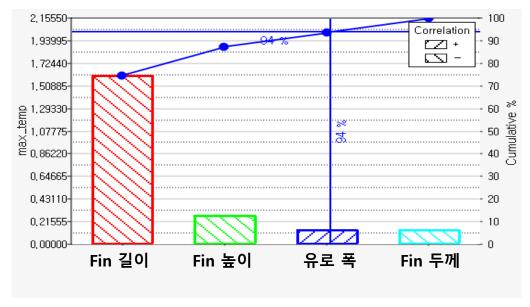
- 해석 결과를 바탕으로 Fin 길이, Fin 높이, Fin 두께,
 유로 폭을 설계 인자로 선정
- 2-Level Full Factorial Design을 이용한 민감도 분석을
 통해 각 설계 인자가 최고 온도와 압력 강하에 미치는
 영향을 확인
- 최고 온도와 압력 강하에 큰 영향을 미치는 설계 인자를
 각각 설계 변수로 선정하여 최적화 진행

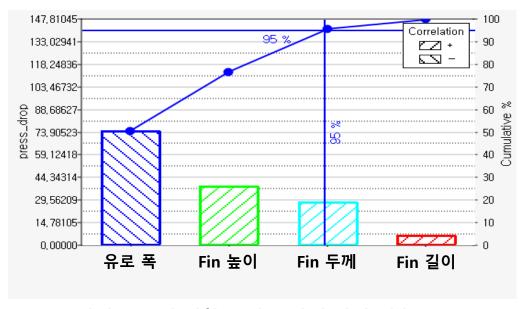
➤ 설계 인자 Boundary 설정

- 민감도 분석을 하기 위한 설계 인자 2수준 설정
- 민감도 = $\frac{ 목적 함수 변화율}{ 설계 인자 변화율}$, 민감도가 클수록 목적함수에 영향을 많이 끼치는 설계인자로 판단
- 설계 인자 별 Scale 차이가 민감도에 영향을 미치지 않도록 동일한 변화율 적용
- Boundary는 모든 설계 인자에 대해 Geometry의 왜곡이 일어나지 않는 ±2.0% 범위 설정

설계 인자	Initial Model	Lower Boundary	Upper boundary
Fin 길이(mm)	160	156.8	163.2
Fin 높이 (mm)	23	22.54	23.46
Fin 두께 (mm)	2	1.96	2.04
유로 폭 (mm)	40	39.2	40.8

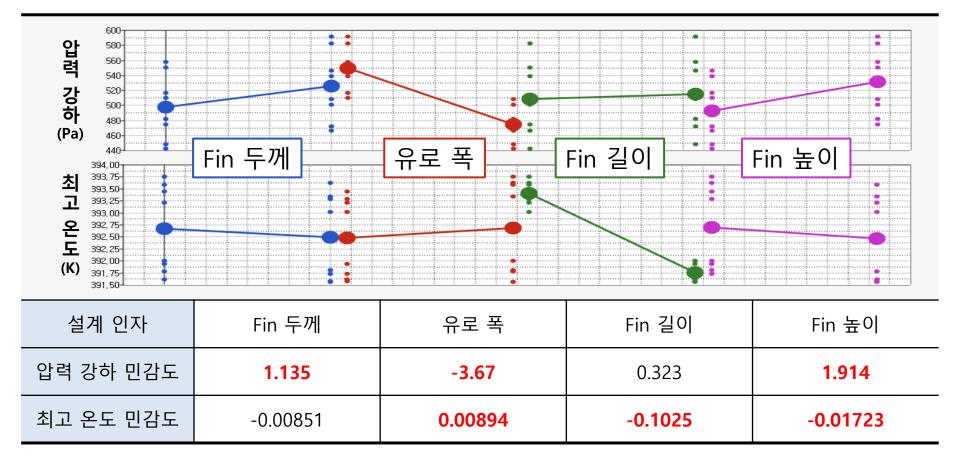
➤ 설계 인자 Boundary 설정


- 민감도 분석을 하기 위한 설계 인자 2수준 설정
- 민감도 = 목적 함수 변화율 생계 인자 변화율 , 민감도가 클수록 목적함수에 영향을 많이 끼치는 설계인자로 판단
- 설계 인자 별 Scale 차이가 민감도에 영향을 미치지 않도록 동일한 변화율 적용
- Boundary는 모든 설계 인자에 대해 Geometry의 왜곡이 일어나지 않는 ±2.0% 범위 설정


Case	Fin-길이	Fin-높이	Fin-두께	유로 폭
Case 1	156.8	22.54	1.96	3.92
Case 2	156.8	22.54	1.96	40.8
Case 3	156.8	22.54	2.04	3.92
Case 4	156.8	22.54	2.04	40.8
Case 5	156.8	23.46	1.96	3.92
Case 6	156.8	23.46	1.96	40.8
Case 7	156.8	23.46	2.04	3.92
Case 8	156.8	23.46	2.04	40.8

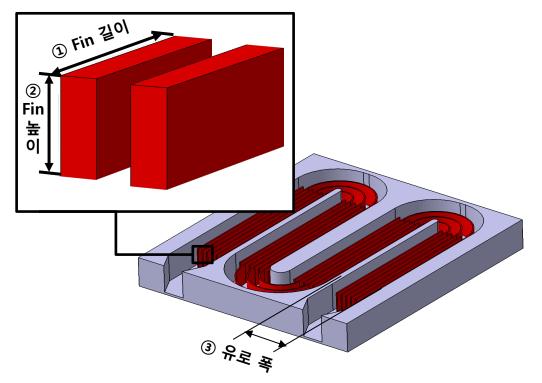
Case	Fin-길이	Fin-높이	Fin-두께	유로 폭
Case 9	163.2	22.54	1.96	3.92
Case 10	163.2	22.54	1.96	40.8
Case 11	163.2	22.54	2.04	3.92
Case 12	163.2	22.54	2.04	40.8
Case 13	163.2	23.46	1.96	3.92
Case 14	163.2	23.46	1.96	40.8
Case 15	163.2	23.46	2.04	3.92
Case 16	163.2	23.46	2.04	40.8

압력 강하 및 최고 온도에 대한 설계 인자 효과의 계층분포


<최고 온도에 대한 설계 인자 효과의 계층분포>

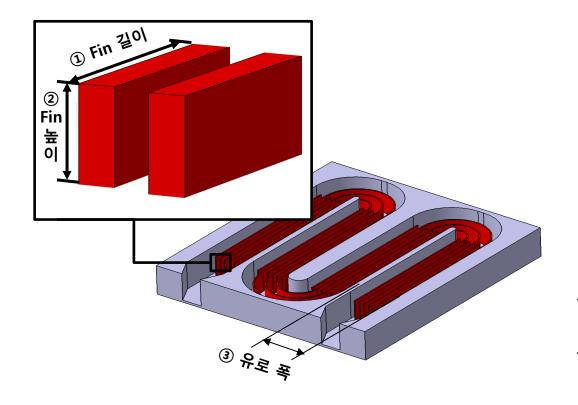
<압력 강하에 대한 설계 인자 효과의 계층분포>

- 최고 온도에 영향을 미치는 정도는 Fin 길이 > Fin 높이 > 유로 폭 > Fin 두께 순서
- 압력 강하에 영향을 미치는 정도는 유로 폭 > Fin 높이 > Fin 두께 > Fin 길이 순서
- Fin 길이, Fin 높이, 유로 폭이 최고 온도에 94% 이상의 영향을 미침
- 유로 폭, Fin 높이, Fin 두께가 압력 강하에 95% 이상의 영향을 미침


▶ 설계 인자에 따른 최고 온도 및 압력 강하 민감도 분석

- 각 설계 인자들은 압력 강하와 최고 온도에 대해 상반되는 경향의 영향을 미침
- 각 목적 함수에 대해 높은 민감도를 가지는 3개의 인자를 설계 변수로 최적화 진행

▶ 1차 최적 설계 정식화



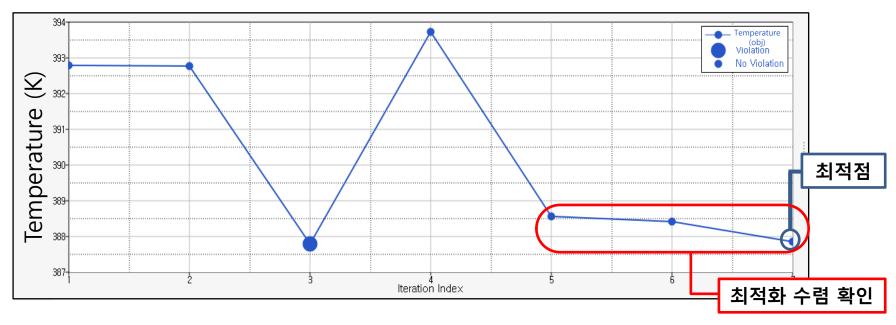
목적 함수	최고 온도 <mark>최소화</mark>
설계 변수	Fin 길이, Fin 높이, 유로 폭
구속 조건	압력 강하 < 507 Pa

- 1차 최적화는 압력 강하를 초기 모델 압력 강하 이하로 제한한 상태에서 최고 온도 최소화로 진행
- 목적함수는 최고 온도 최소화로 설정
- 최고 온도에 대한 민감도가 높은 Fin 길이, Fin 높이, 유로 폭을
 설계 변수로 선정
- 초기 모델의 압력 강하를 구속 조건으로 설정

▶ 1차 최적 설계 변수 Boundary 설정

설계 변수	Initial Model	Lower Boundary	Upper boundary
Fin 길이 (mm)	160	145	175
Fin 높이 (mm)	23	8.05	24
유로 폭 (mm)	40	35	45

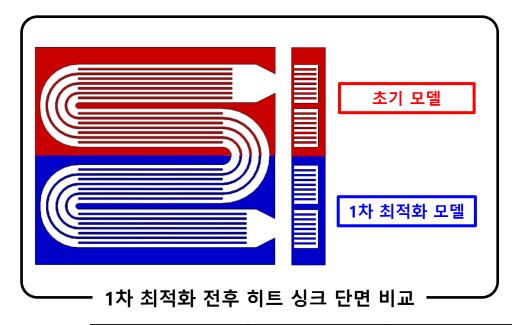
- 최적 설계 진행을 위한 설계 변수 Boundary 설정
- 설계변수의 최대 변화 가능 범위는 기본 모델 치수의±65% 범위 설정
- 시행착오법으로 Geometry 왜곡을 일으키는 Boundary 수정

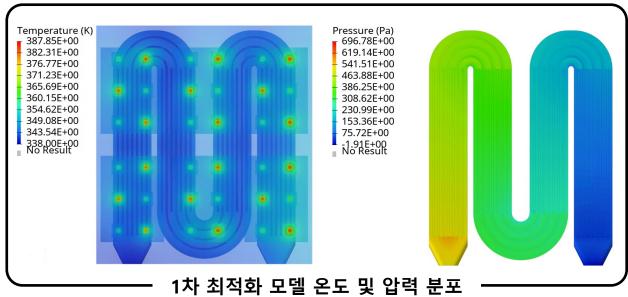


▶ 반응표면법(Response Surface Method)을 이용한 최고 온도 최적화

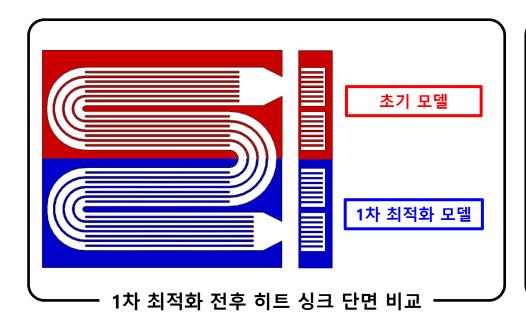
설계영역에서 설계변수와 특성치 사이 관계를 근사화 하여 어느 설계변수 수준에서 목적함수에 가장 근접한
 특성치를 얻는지 확인

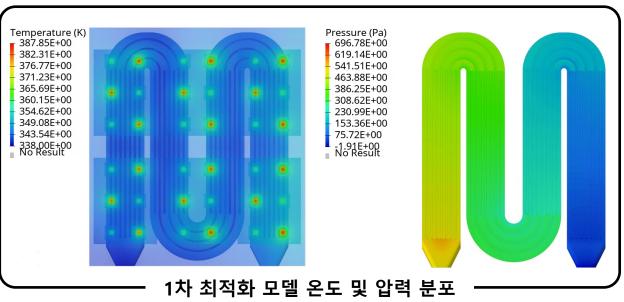
Absolute Convergence	0.001
Relative Convergence	1.00%
Input Variable Convergence	0.001





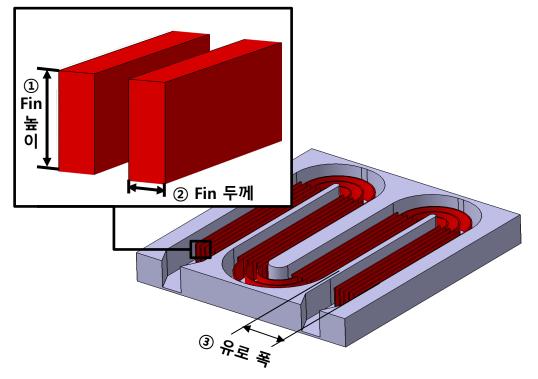
- ARSM을 통해 설계영역내에서 국부 최적화를 진행하여 짧은 시간 내에 최적화 결과를 얻을 수 있음
- 7번째 Iteration에서 최적화 수렴
- 최적점에서 압력 강하는 500.25 Pa로 구속 조건 만족하며 구속 조건 내에서 최고 온도는 감소


▶ 1차 최적화 결과 분석 및 초기 모델과 비교

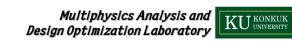


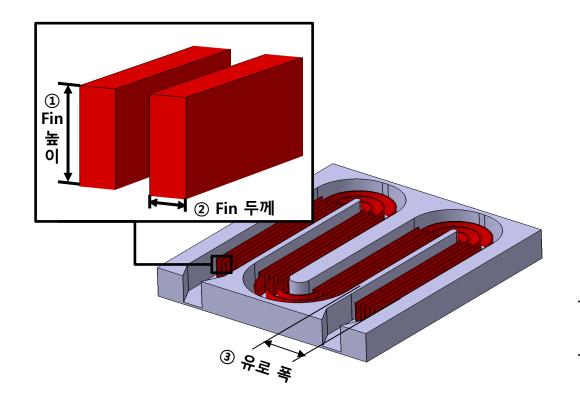
	Fin 두께 (mm)	Fin 길이 (mm)	Fin 높이 (mm)	유로 폭 (mm)	최고 온도 (K)	압력 강하 (Pa)
초기 모델	2	160	23	40	392.73	506.66
1차 최적화 모델	2.00	175.00	22.542	40.102	387.85	500.69
변화량	-	15.00	-0.458	0.102	-4.88	-5.97
 변화율	-	9.375 %	-1.991 %	0.254 %	-1.243 %	-1.178 %

▶ 1차 최적화 결과 분석 및 초기 모델과 비교


- 압력 강하 변화율 대비 최고 온도 변화율이 큰 Fin 길이는 최고 온도를 감소시키는 방향으로 변화
- 압력 강하 변화율 대비 최고 온도 변화율이 작은 Fin 높이, 유로 폭은 압력 강하 증가를 완화시키는 방향으로 변화
- Trade-off 관계를 고려하여 설계 변수 간 최적화가 진행됨

초기 모델 대비 1차 최적화 모델 최고 온도 4.88 K 감소

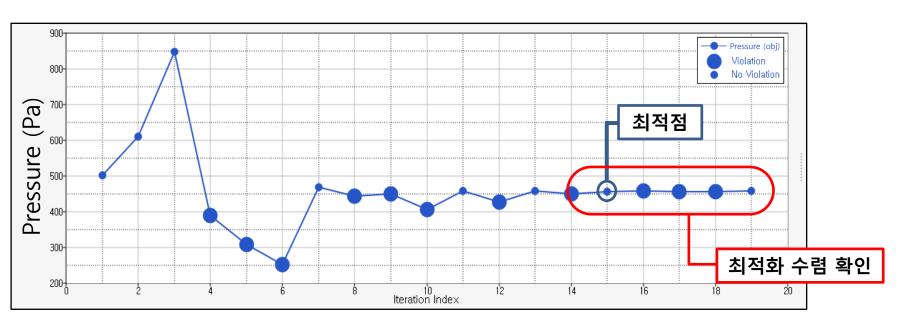

▶ 2차 최적 설계 정식화


목적 함수	압력 강하 최소화
설계 변수	Fin 높이, Fin 두께, 유로 폭
구속 조건	최고 온도 < 387.9 K

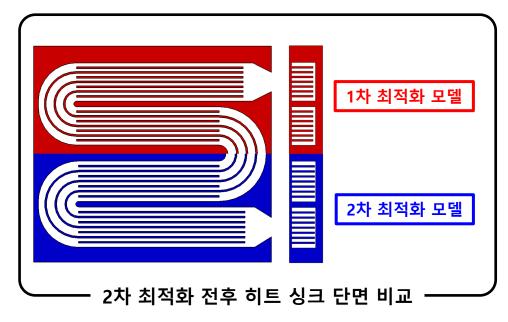
- 2차 최적화는 최고 온도를 1차 최적화 모델 최고 온도 이하로제한한 상태에서 압력 강하 최소화로 진행
- 목적함수는 압력 강하 최소화로 설정
- 압력 강하에 대한 민감도가 높은 Fin 높이, Fin 두께, 유로 폭을
 설계 변수로 선정
- 1차 최적화 모델의 최고 온도를 구속 조건으로 설정

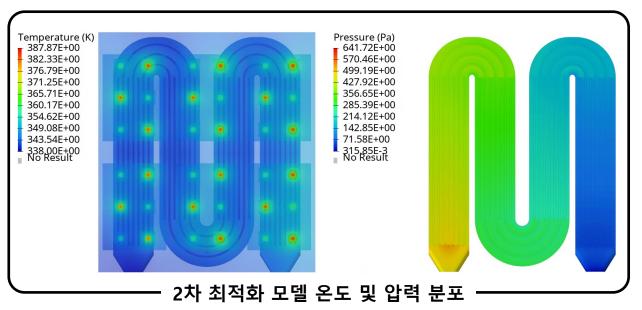
> 2차 최적 설계 변수 Boundary 설정

설계 변수	Initial Model	Lower Boundary	Upper boundary
Fin 높이 (mm)	23	8.05	24
Fin 두께 (mm)	2	0.7	2.5
유로 폭 (mm)	40	35	45


- 최적 설계 진행을 위한 설계 변수 Boundary 설정
- 설계변수의 최대 변화 가능 범위는 기본 모델 치수의±65% 범위 설정
- 시행착오법으로 Geometry 왜곡을 일으키는 Boundary 수정

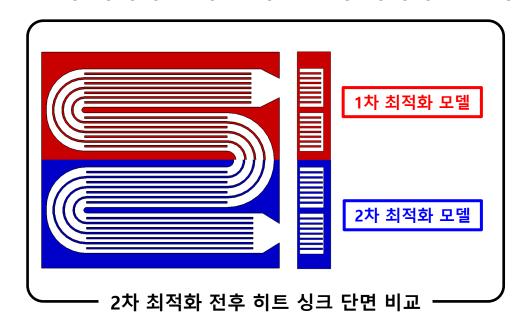
▶ 반응표면법(Response Surface Method)을 이용한 압력 강하 최적화

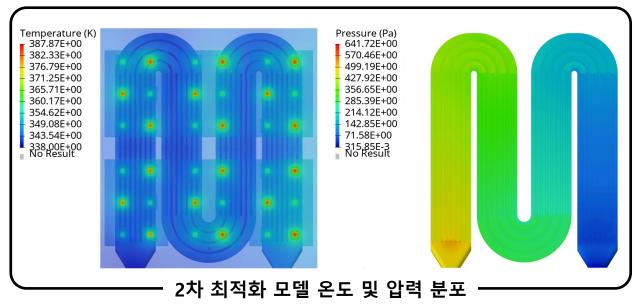

0.001
1.00%
0.001



- ARSM을 통해 설계영역내에서 국부 최적화를 진행하여 짧은 시간 내에 최적화 결과를 얻을 수 있음
- 15번째 Iteration에서 최적화 수렴
- 최적점에서 최고 온도는 387.87 K으로 구속 조건 만족하며 구속 조건 내에서 압력 강하는 감소

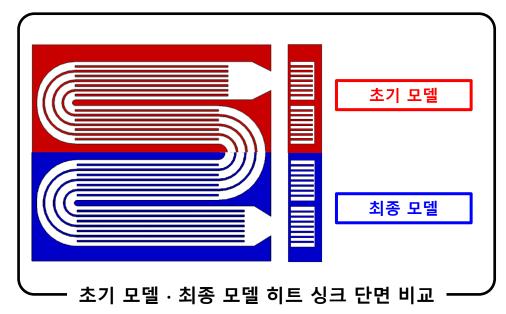
▶ 2차 최적화 결과 분석 및 1차 최적화 모델과 비교

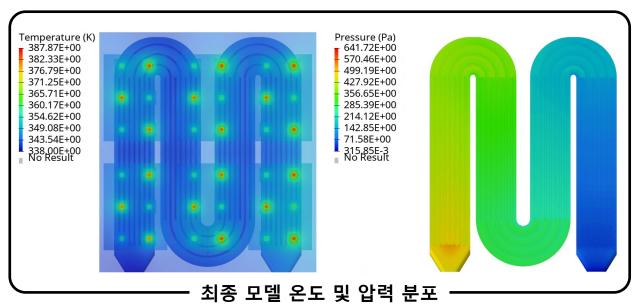




	Fin 두께 (mm)	Fin 길이 (mm)	Fin 높이 (mm)	유로 폭 (mm)	최고 온도 (K)	압력 강하 (Pa)
1차 최적화 모델	2.00	175.00	22.542	40.102	387.85	500.69
2차 최적화 모델	1.9676	175.00	24.000	42.197	387.87	457.02
변화량	-0.0324	-	1.458	2.095	0.02	-43.67
변화율	-1.619 %	-	6.468 %	5.226 %	0.005 %	-8.722 %

▶ 2차 최적화 결과 분석 및 1차 최적화 모델과 비교


- 최고 온도 변화율 대비 압력 강하 변화율이 큰 유로 폭은 압력 강하를 감소시키는 방향으로 변화
- 최고 온도 변화율 대비 압력 강하 변화율이 작은 Fin 두께, Fin 높이는 최고 온도 증가를 완화시키는 방향으로 변화
- Trade-off 관계를 고려하여 설계 변수 간 최적화가 진행됨



1차 최적화 모델 대비 2차 최적화 모델 압력 강하 43.67 Pa 감소

▶ 최적화 결과 분석

	Fin 두께 (mm)	Fin 길이 (mm)	Fin 높이 (mm)	유로 폭 (mm)	최고 온도 (K)	압력 강하 (Pa)
초기 모델	2	160	23	40	392.73	506.66
최종 모델	1.9676	175.00	24.000	42.197	387.87	457.02
 변화율	-1.62 %	9.375 %	4.348 %	5.493 %	-1.237 %	-9.797 %

최적화 결과 최고 온도 4.86 K 감소, 압력 강하 49.6 Pa 감소

Contents

1. 서론

- 1.1 연구 개요
- 1.2 연구 목표
- 1.3 해석 절차

2. 인버터 열 유동 해석

- 2.1 열 유동 해석 개요
- 2.2 지배 방정식
- 2.3 해석 모델
- 2.4 초기 모델에 대한 열 유동 해석
- 2.5 설계 인자 선정을 위한 Case Study

3. 냉각 성능 및 압력 강하에 대한 히트 싱크 최적화

- 3.1 최적 설계 개요
- 3.2 최적화 Process in HyperStudy
- 3.3 실험계획법을 이용한 민감도 분석
- 3.4 1차 최적 설계 최고 온도 최소화
- 3.5 2차 최적 설계 압력 강하 최소화
- 3.6 최적화 결과

4. 결론

4.1 결론

4.1 결론

▶ 열 유동 해석으로 냉각 Fin 면적과 유로 단면적이 최고 온도와 압력 강하에 영향을 주는 것을 확인

▶ 열 유동 해석 결과를 통해 압력 강하와 최고 온도의 Trade-off 관계 확인 및 설계 인자 선정

▶ 실험계획법을 이용한 민감도 분석 결과를 통해 설계 인자가 최고 온도와 압력 강하에 미치는 영향을 확인하였고 각 설계인자는 최고 온도와 압력 강하에 상반된 영향을 미치는 것을 확인

▶ 최고 온도와 압력 강하의 Trade-off 관계를 고려하여 설계 변수 최적화가 진행된 것을 확인

히트 싱크 형상 최적화 결과를 통해 냉각 성능과 압력 강하 모두 개선 효과 확인

참고 문헌

- Reimers, John, et al. "Automotive traction inverters: Current status and future trends." IEEE Transactions on Vehicular Technology 68.4 (2019): 3337-3350.
- > Zhao, Tiefu, et al. "Comparisons of SiC MOSFET and Si IGBT based motor drive systems." 2007 IEEE Industry Applications Annual Meeting. IEEE, 2007.
- SATO, Yoshinori, et al. "Development of high response motor and inverter system for the Nissan LEAF electric vehicle", SAE Technical Paper, 2011.
- G. Moreno, et al. "Evaluation of performance and opportunities for improvements in automotive power electronics systems", 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (ITherm), 2016.
- Onoroh, F., et al. "Thermal Optimization of Heat Sink for Inverter Applications." IOP Conference Series: Materials Science and Engineering. Vol. 413. No. 1. IOP Publishing, 2018.
- Park, Kyoungwoo, and Dong-Hoon Choi. "Optimal design of a heat sink using the sequential approximate optimization algorithm." Korean Journal of Air-Conditioning and Refrigeration Engineering 16.12 (2004): 1156-1166.
- ▶ 김대건, and 김성철. "ISG 구동용 인버터의 열유동 해석에 관한 연구." 한국자동차공학회논문집 21.5 (2013): 145-150.
- ▶ 金京滿, et al. "HEV 용 인버터의 방열을 위한 수냉식 배관구조." 전력전자학회논문지 15.1 (2010): 27-34.

Thank You 08A

