2023 대학생 자작자동차대회

알테어 최적설계상 보고서

학교명		부산대학교	팀명	Auto_Lab		
차량번호		116	팀장	문준필		
tl2t	이름	FAL_23				
~10	제원	전장 3110mm × 전폭137	전장 3110mm × 전폭1377.8 mm × 전고 1239.7mm (무게 260 kg)			

상기 참가팀은 2023 대학생 자작자동차대회의 알테어 최적설계상 부문 보고서를 다음과 같 이 제출합니다.

2023년 8월 15일

대학생 자작자동차대회 조직위원회 귀중

- 설계 보고서 작성법은 아래와 같습니다.

- 1) 가급적 어떤 기술(방법)을 적용 했느냐가 아니라 어떤 이유로 CAE를 적용, 활용했는가 서술
- 2) 가급적 어떤 부품을 적용 했느냐가 아니라 어떤 이유로 부품을 적용했는가 서술
- 3) 감성적 글쓰기가 아니라 정량적 결과를 서술 (사진, 계산식, 해석결과, 그래프 등)
- 4) 과거 차와 비교해 개선 또는 혁신 내용 (과거차를 무시하는 발언은 금물)

5) 해당사항 또는 강조할 내용 중심 위주로 작성

- -. 섀시 : 프레임, 현가장치, 제동장치, 조향장치 등
- -. 동력계 : 엔진(흡,배기), 모터-배터리, 구동계, 윤활-냉각 등
- -. 인체 공학 : 변속기, 시트, 페달, 스위치 접근성, 계기판 시인성 등
- -. 공기역학 : 바디, 디퓨저, 윙 등
- 6) 작성 순서 (총 4page 이하)

-요약 / 설계 / 해석 / 제작 / 검증, Test 결과 / 원가절감 사례(3건이하) / 결론 / 참고 문헌

- 본 문서는 <mark>8/15 (화)</mark>까지 신청폼에 첨부하여 제출 바랍니다.

- 신청폼 바로가기 : <u>https://web.altair.com/ksae-aoa2023</u>

1. 도면

1) 정면도

2) 평면도

설계 보고서 : Auto Lab 최적 설계 보고서 HyperWorks CFD를 이용한 프론트윙, 리어윙 최적 설계 Inspire를 이용한 스완넥 위상최적화 및 구조해석

박수현, 박윤정, 정성민, 박시현, 이수호, 김주환, 김동현, 김태우, 박기정, 김민환, 민대홍, 김현수 부산대학교 Auto_Lab 팀 (FAL-23)

요약:

본 팀은 2023년도 KSAE 자작자동차 대회 Formula 부문 출전을 위해 '안정적인 고출력 Formula'를 목표로 차량을 설계했다. 랩타임을 유의미하게 단축시킬 수 있는 높은 양항비와 양력계수 목표값을 달성하기 위해 Altair HyperWorks CFD를 활용하여 프론트윙 및 리어윙을 최적설계했다. 윙을 지지하는 스완넥을 경량화하고자 Altair Inspire를 이용하여 위상최적화했다.

I.서론

Fal-23은 600cc 엔진(YZF-R6)를 탑재한 고출력 포뮬러 이다. 공력장치가 차량의 동적 성능에 미치는 영향을 파악 하고자 랩 시뮬레이션 프로그램(Optimum lap)을 이용해 양 력 및 항력에 따른 KSAE 트랙 랩타임을 비교했고, 결과적 으로 항력보다 양력이 랩타임에 더 민감한 경향을 보였다. 코너링이 많은 코스 특성상 양력에 의한 코너 탈출 속도 증 가가 랩타임 감소에 큰 영향을 주기 때문이라고 판단하여 Altair HyperWorks CFD를 이용해 높은 양력을 생성하는 프론트윙, 리어윙의 최적설계를 진행했다. 내구레이스 시뮬 레이션 랩타임을 1초 이상 단축시킬 수 있는 양항비 -2, 양 력계수 -1.5 이상을 설계 목표값으로 설정했다.

스완넥은 윙에 작용하는 공기역학적 하중과 자중을 모두 지지하며 프레임에 고정하는 마운트의 한 형태이다. Altair Inspire를 통해 충분한 강도와 강성을 만족하는 최적화된 스완넥 형상 설계를 목표로 하였다.

∏.본론

1. Wing

1.1. 설계

High lifted airfoil 중 trailing edge가 날카로운 형상은 제작에 어려움이 있어 airfoil은 eppler 423을 선택했다. 높 은 양력 생성을 위해 3 element wing으로 구성했다. 프론 트윙의 chord 길이비는 3:1:1로 설정하였고[1], 리어윙은 방화벽의 영향을 고려하여 main flap chord 길이를 줄인 1.8:1:1로 설정했다.

1.2. 해 석

전 처리 과정은 다음과 같다.

① Boundary condition

고체 표면에 해당하는 차체와 윙은 No slip, KSAE 내구 레이스 기준 예상 최고속도인 80 km/h에 해당하는 inlet 및 ground 조건을 부여했다. 바퀴의 회전을 고려하여 타이어 각속도 85.47 rad/s로 Reference frame 조건을 부여했다.

Wing	No slip		
Body(Full car)	No slip		
Wheel(Full cor)	No slip		
Wheel(Full Cal)	Reference frame (85.47 rad/s)		
Inlet	Constant (22.2 m/s)		
Outlet	Pgage = 0 kPa (대기압)		
Ground	Moving (22.2 m/s)		
대칭면	Symmetry		
윗면, 옆면	Slip		

Table. 1 Boundary condition

② Physics

Phase	Single phase			
	(incompressible)			
Time marching	Steady			
Turbulence model	SST[2]			
Steady maximum steps	300			
Convergence tolerance	0.0001			
Table 2 Physics				

③ Mesh condition

해석에 소요되는 시간을 최대 48시간으로 설정했다. 목표 시간 이내에 양력 및 항력이 일의 자리 수에서 수렴하는 mesh size를 찾아 설정했다.

(A) Surface mesh size control

	단위: m			
Ground	0.1			
Body	0.03			
Wing, Wheel	0.005			
Inlet, Outlet	1.5			

Table. 3 Surface mesh size control

(B) Boundary layer

1 st layer thickness	Y+ based		
Total number of layers	12		
Final layer height / Base Ratio	0.1		
Table A Poundant latton			

Table. 4 Boundary layer

Y+ based				
Flow type	External			
Desired y+ value	1.0			
Bulk velocity (m/s)	22.222			
Reference material	Air			
Reference length (Full car)	3.1			
Table. 5 Y+ calculator				

(C) Zone

Box 기능을 이용해 차량 주변부 mesh 크기를 조밀하게 생성했다.

(D) Volume mesh

Average element size를 0.5로 설정했다.

Fig. 4 해석 유동장 Mesh

1.2.1 프론트윙

	① Flap AoA 결정		② midplate 형상 결정	\rightarrow	③ Endplate outwash 유무
--	---------------	--	------------------	---------------	-----------------------

① Flap AoA 결정

(A) main, 2nd flap 해석 시간을 줄이면서 AoA에 따른 양력의 경향성을 파악 하고자 Full car dummy에 assembly하지 않은 2 element wing 단품 모델로 해석했다.

Fig. 5 2 element wing 해석 모델

main flap AoA는 0~2도, 2nd flap AoA는 28~34도 범위 에서 해석을 진행했다.

Fig. 6 2 element wing AoA에 대한 양력 곡선

가장 높은 양력을 생성하는 main flap AoA를 0도, 2nd flap AoA를 30도로 결정했다.

(B) 3rd flap

3rd flap AoA 45~72도 범위의 모델(main flap AoA: 0 도, 2nd flap AoA: 30도)을 해석했다.

Fig. 7 3rd Flap AoA에 따른 유속 해석(좌 48도, 우 72도) flap의 AoA가 일정 각도를 넘으면 대규모 박리가 발생함 을 확인할 수 있다. 가장 높은 양력을 생성하는 48도를 3rd flap의 AoA로 결정했다.

② midplate 형상 결정

Plate는 공기 흐름을 flap 위 또는 아래로 유도하여 효율을 높이는 역할을 한다. midplate 형상이 다른 아래 2가지 모 델을 단품 해석하여 비교했다.

	직선 형상	곡선 형상	
양력	-422 N	-436 N	
Table. 6 midplate의 형상에 따른 프론트윙 양력			

해석결과 14 N 더 높은 양력을 생성하는 곡선형상 mid plate로 결정했다.

③ Endplate outwash

전륜을 지나는 유동은 회전에 의해 wake가 발생하므로, outwash endplate를 설계하여 전륜 외측으로 공기를 유도 했다.

Fig. 9 Outwash Endplate

Fig. 10 Outwash Endplate 유선

① Flap AoA 결정

리어윙은 프론트윙에 비해 형상이 단순하므로 endplate를 장착한 초안 모델을 모델링하여 비교해석 했다. 프론트윙과 같은 과정으로 flap 유동해석을 진행 하고, 결과를 토대로 모델의 flap AoA를 결정했다.

20	AoA (deg)				
IIO	main	2nd flap	3rd flap		
1	5	30	45		
2	5	30	49		
3	5	32	49		
4	5	32	51		
5	5	32	54		

Table. 7 모델별 Flap AoA

Fig. 12 4번 모델의 속도장

4번 모델에서 가장 큰 양력이 발생했으므로 flap AoA는 main flap 5도, 2nd flap 32도, 3rd flap 51도로 결정했다.

⁽²⁾ Cascade Wing

공력에 의한 전-후륜 하중비를 고려하여 Cascade wing 을 추가했다. Cascade wing의 (A)chord 길이, (B)AoA 두 설계변수에 대한 유동해석 결과를 비교하여 최적화했다.

(A) Chord 길이

Cascade wing의 chord 길이를 100 mm, 150 mm, 200 mm로 설정한 모델을 해석했다.

가장 큰 양력을 생성한 200 mm를 Cascade wing의 chord 길이로 결정했다.

(B) AoA Cascade wing의 AoA ~13도 범위의 모델을 해석했다.

DOWN FORCE 610 605 600 595 590 585 580 10 11 13 Fig. 14 Cascade wing AoA에 따른 양력

가장 큰 양력이 발생한 10도를 Cascade wing의 AoA로 결정했다.

		양력	항력
Cascade	0	-688 N	262 N
wing	Х	-642 N	238 N

Table. 8 Cascade Wing의 유무에 다른 양력/항력

Fig. 15 Cascade Wing 장착 속도장

결과적으로 Cascade wing 장착 시 양력이 약 46 N 증가 한 것을 확인할 수 있다.

③ Full car

리어윙은 차량에 있는 방화벽에 의해 main flap으로 가는 유량이 차단되기 때문에 단품 해석에 비해 Full car 해석 시 양력이 감소하는 양상을 보였다. 따라서 (A) chord 길이 (B) flap 위치를 설계 변수로 하여, Full car 해석 결과를 반 영한 리어윙 설계를 진행했다.

(A) chord 길이

chord 길이를 조정한 3개의 모델을 만들어 해석 결과를 비교했다.

no	cl	hord (mn	1)	아러	치러	
	main	2nd	3rd	ð T	84	
1	324	180	180	-386 N	122 N	
2	342	190	190	-379 N	124 N	
3	360	200	200	-389 N	128 N	
	Table 0 Plan about 기이에 따로 아랍/하려					

Table. 9 Flap chord 길이에 따른 양력/항력

3번 모델이 가장 큰 양력을 생성하므로 chord 길이는 main flap 360 mm, 2nd flap 200 mm, 3rd flap 200 mm로 설 정했다.

Fig. 16 3번 모델의 속도장

(B) Flap 위치

	양력	항력		
기존 모델	-388 N	127 N		
변경 모델 (5 mm 상승)	-396 N	128 N		
Table 10 Flan 위치 조저에 따르 리어워 양력/하려				

Flap의 위치를 5 mm 높여 양력 생성량을 증가시켰다.

1.2.3 Full car Assembly

Part	향	항력
프론트윙	-414 N	79 N
리어윙	-397 N	127 N
Body	13 N (lift)	166 N
Full car	-798 N	372 N

Table. 11 파트별 Full car Assembly 해석 결과 비교

		항력	양력	Cd	Cl	L/D
2313	Aero O	372	-798	0.81	1.73	2.15
25년 차량	Aero X	48	-14	0.10	0.03	0.29
224	친 차량	52.5	-62.8	0.22	0.26	1.20

Table. 12 Full car Assembly 해석 결과 비교

Fig. 18 Full car Assembly 압력장과 유선

Full car Assembly 해석 결과 프론트윙, 리어윙 각각 - 400 N 부근, 도합 약 -800 N의 양력을 생성했고, 양력계 수 -1.78, 양항비 -2.15로 목표값을 달성했다.

Fig. 19 공력장치 최종 설계

1.3. 제작

윙의 재료는 경량화를 위하여 GFRP에 비해 가볍고 높은 강도를 가지는 CFRP로 선정했다. 각 flap과 plate는 곡률 이 작으므로 능직보다 튼튼한 직조패턴을 가지는 평직을 사 용했다. hand lay-up 성형법보다 인장강도, 내부식성이 뛰 어난 CFRP를 성형할 수 있는 infusion 성형법으로 제작했 다.[3] Plate는 PVC폼 양면에 카본 섬유를 적충한 후 워터 젯 가공을 했다.

Fig. 20 Full car Assembly 모습

1.4 검증, Test 결과

장비의 부족으로 풍동시험이 불가하여 랩 시뮬레이션 프 로그램(Optimumlap)을 이용했다. Fal-23과 유사한 설정 의 차량 모델에 공력장치를 장착했을 때와 장착하지 않았 을 때의 양력계수 및 항력계수를 적용해 내구레이스 시뮬 레이션 랩타임을 확인했다.

lap time (s)	내구 레이스	가속 이벤트	스키드 패드	오토 크로스
Aero O	55.48	4.99	4.75	40.51
Aero X	56.7	5.00	4.91	41.36
 Table. 13 시뮬레이션 랩타임 결과				

공력장치를 장착한 차량은 내구레이스, 스키드패드, 오토 크로스에서 랩타임이 단축되었고, 내구레이스의 경우 1초 이상 랩타임이 단축되었다.

1.5 원가 절감 사례 (3건 이하)

크기가 동일한 flap을 성형할 때 몰드를 재사용하여 몰드 제작비용을 절감할 수 있었다.

면적이 넓은 리어윙의 flap 몰드를 PLA 필라멘트보다 단 가가 저렴한 MDF합관으로 제작했다. 3D프린터로 출력하 여 제작하는 필라멘트 몰드에 비해 CNC라우터 가공하는 MDF합관 몰드는 가공시간이 훨씬 짧으므로 시간비용 또 한 줄일 수 있다.

2. 스완넥 (Swan-neck)

2.1. 설계

Fig. 22 리어윙 체결점

스완넥은 위 사진과 같이 프레임에 체결되어 윙을 지지 하는 부품이다. 윙에 작용하는 공기역학적 하중 및 자중, 주 행에 의한 동하중 발생을 고려해 최소 안전율 4를 목표로 하여 위상최적화했다.

2.2. 해석 2.2.1. 전처리 과정

재료는 비강도가 우수한 Al6061-T6를 선택했다. 프레임 과 윙 사이의 체결점을 고려하여 design space를 설정했고, 워터젯 가공을 고려하여 최종 형상이 2D로 나오도록 shape controls를 Extrusion으로 설정했다.

Altair HyperWorks CFD 해석 결과 프론트윙에 양력 -414 N, 항력 79 N 리어윙의 경우 양력 -397 N, 항력 127 N이 작용한다. 하나의 윙을 2개의 스완넥으로 지지하며 각 스완넥에 2점의 체결점이 존재한다.

-X방향으로 작용하는 항력, -Z방향으로 작용하는 양력에 윙의 자중을 고려하여 하중조건을 부여했고, 프레임과의 체결점은 수평 및 회전운동 구속조건을 적용했다.

최소 안전계수가 4이고 질량 최소화를 목표로 하는 Topology 최적화를 진행했다. 해석결과와 최종 설계 형상 의 간극을 줄이고자 polyNURBS Fit 기능을 이용하여 CAD 파일로 변환 후 이를 바탕으로 스완넥을 설계했다.

2.2.2. 구조해석

최종 형상에 윙과 assembly한 뒤, flap 표면에 양력 및 항 력, 자중에 해당하는 하중 조건을 부여하여 구조해석을 진 행하였다. Fasetener 기능으로 윙과의 체결점에 볼트 및 너 트, 프레임과의 체결점에 고정된 볼트를 적용했다.

Fig. 25 스완넥 구조해석

	프론트 스완넥	리어 스완넥
1ea 무게	0.183 kg	0.456 kg
안전율	4.8	4.3
최대변위량	0.033 mm	0.024 mm

Table.14 스완넥 구조해석 결과

프론트와 리어 스완넥 모두 목표했던 안전율 4 이상을 만족 했고 최대 변위 0.04mm 이하의 결과를 얻을 수 있었다. 초 기 형상에 비해 프론트 스완넥은 57.4 %, 리어 스완넥은 70.0 % 경량화 하였다.

2.3. 제작

워터젯 가공으로 스완넥을 제작했다.

Fig. 26 스완넥 제작 결과

2.4. 검증, Test 결과

KSAE 규정에 명시된 20 kg 해당의 물건을 프론트윙, 리 어윙에 적재함으로써 정하중에 대한 스완넥의 안정성을 확 인했다.

2.5 원가 절감 사례 (3건 이하)

두 개의 메인롤후프 지지대가 서로 평행하지 않으므로 스 완넥이 기울어진 채 체결된다. 체결점 부근에 단차를 주어 각도를 보정할 수 있으나 워터젯 가공보다 가공비가 높은 CNC 가공을 고려해야 한다. 윙과의 체결점에 커넥터를 설 계하여 3D 프린터로 출력함으로써 적은 비용으로 문제를 해결할 수 있었다.

Ⅲ. 결 론

HyperWorks CFD를 이용한 유동해석으로 프론트윙 및 리어윙의 설계변수를 결정하고, Full car Assembly 해석을 통해 리어윙을 적절히 수정하여 높은 양력을 생성하는 공 력장치를 최적설계했다.

- 프론트윙의 flap AoA와 plate 형상, 리어윙의 flap AoA 및 cascade wing 위치를 결정했다. 방 화벽 및 차량 후류의 영향을 반영해 리어윙의 chord 길이를 수정했다.
- full car assembly 해석 결과 80km/h 주행시 프 론트윙 -414 N. 리어윙 -397 N, 윙 포함 전체 차량 -798N의 양력이 작용하는데, 이는 목표 양 항비 -2를 달성한 해석 결과이다.

Altair Inspire를 이용해 윙을 지지하는 마운트인 스완넥을 설계했다. Topology 최적화로 형상을 결정하고, 최종 형상 을 구조해석하여 안전율과 최대 변위량을 확인했다. 윙을 지지할 수 있는 강도와 강성을 확보한 최적화된 형상의 스 완넥을 설계했다.

References

[1] McBeath, S. (2011). Competition car aerodynamics. In Haynes eBooks. https://ci.nii.ac.jp/ncid/BB10023943

[2] Kathan Parekh, Umang Patdiwala (2020). A Comparative Study of Turbulence Models on Aerodynamics Characteristics of a Fsae race car. Journal of Engineering Sciences, 11,412-420. DOI:10.15433.JES.2020.V11I06.43P.66

[3] Chokka, S. K., Ben, B. S., & Srinadh, K. V. S. (2019). Enhanced Tensile and Wear Properties of CFRP Composites Manufactured Using Vacuum Infusion Process. Materials Science Forum, 969, 271-277.

https://doi.org/10.4028/www.scientific.net/msf.969.2 71