Frontal crash & Side Pole crash

배터리 패키징 구조최적화

국민대학교 구조성형설계 실험실

황 의 찬 / 김 성 택

담당교수 : 김흥규 교수님

Contents

3

7

- 친환경 자동차 적용 배경
- 배터리팩구성
- 차량 시험 규정

II. Process & Modeling

- Process
- Modeling
- Model Size
- Material Information
- Case of Crash

III. 모듈 구조 최적화 (Frontal Crash)

- Stress Contour & Deformation
- Equivalent Static load
- Topology
- Optimization
- Result

IV. 팩 구조 최적화 (Side Pole Crash)

- Initial Model Information
- Pack body Rib 보강
- Setting Process (Hyperstudy)
- Optimization
- Result

V. 최적화 결론

14

I. 연구배경

I. 연구 배경 _ 친환경 자동차 적용 배경

<u>현재</u>

- 환경 문제에 대한 관심이 높아짐에 따라 글로벌 완성차 업체들의 친환경 차량 보급 가속화
- 친환경 차량 시장에서 <mark>리튬이온 배터리를 주 동력원</mark>으로 사용하는 EV차량이 빠르게 발전 및 보급되고 있음
- 충돌 시 <mark>열폭주 현상</mark>과 같은 안정성에 대한 문제로 인해 내구성을 고려해야 하고 주행거리를 위한 경량화 또한 고려

<u>요구 항목</u>

- 충돌 시 배터리 열폭주를 방지하기 위한 Battery pack & Module 내구성 확보
- EV 차량의 약 1/3 무게를 차지하는 배터리 팩의 <mark>경량화</mark>를 통한 EV 차량의 전비 및 에너지 효율, 가속성능 확보
- <mark>경량화, 안전성 확보의 동시 만족</mark>을 목표로 연구를 진행

<u>목표</u>

- 충돌 시 기존 Battery pack & Module에 비해 우수한 <mark>내구성 확보</mark>
- 기존 Battery pack & Module에 내구성을 확보하는 동시에 경량화
- 경량화 된 상태로 우수한 내구성을 확보할 수 있는 최적 설계 모델 도출

I. 연구 배경 _ 배터리 팩구성

I. 연구 배경 _ 차량 시험 규정

II. Process & Modeling

II. Process & Modeling _ Process

II. Process & Modeling _ Modeling

🔰 💐 Modeling

II. Process & Modeling _ Model Size

🔰 💐 Modeling

II. Process & Modeling _ Material information

DYNAMIC [Frontal & Side Pole Crash] \rightarrow Material information										
Part name	Material	Density [t/mm ³]	Modulus [MPa]	Poisson's ratio	Elastic / Plastic					
RIGID WALL	RIGID	-	-	-	-					
Crash body	Steel	7.89 E-9	210,000	0.3	Plastic					
Pack body Steel		7.89 E-9	210,000	0.3	Plastic					
Pack cover	Aluminum 6061	2.7 E-9	68,000	0.33	Plastic					
Cooling plate	Steel	7.89 E-9	210,000	0.3	Plastic					
Module plate	Steel	7.89 E-9	210,000	0.3	Plastic					
Module	Plastic (PA6)	1.12 E-9	2,600	0.35	Elastic					

Reference : Fracture Toughness Measurement for Aluminum 6061-T6 using Notched Round Bars Reference : Numerical Analysis for a Bicycle Frame made of Mild Steel and Composite

Reference : Numerical Analysis for a Bicycle Frame made of Mild Steel and Con
 Reference : Altair Material Data Center 4MID 9B24100 (PA6)

1)

KOOKMIN UNIVERSITY

II. Process & Modeling _ Case of Crash

III. 모듈 구조 최적화(Frontal Crash)

III. 모듈 구조 최적화 _ Stress Contour

🔀 Module 단위 정적해석

III. 모듈 구조 최적화 _ Deformation

KOOKMIN UNIVERSITY

III. 모듈 구조 최적화 _ Equivalent Static Load

人 Module 단위 정적해석

1) reference : converting dynamic impact events to equivalent static loads in vehicle chassis

III. 모듈 구조 최적화 _ Equivalent Static Load

						*
		Simple model	Simple	model	Detailed	l model
Unit [MPa]		DYNAMIC (reference)	STATIC (simple)	Error (%)	STATIC (detailed)	Error (%)
A C	Von-Mises Stress	256	203	20.7 %	273	6.2 %
	YY	245	243	0.82 %	245	0 %
B	Von-Mises Stress	222	210	5.4 %	267	16.9 %
	YY	-251	-250	0.4 %	-254	1.2 %
D E	Von-Mises Stress	279	244	12.5 %	272	2.5 %
	YY	-277	-276	0.4 %	-279	0.7 %
E	Von-Mises Stress	284	248	12.7 %	294	3.4 %
	YY	304	308	1.3 %	305	0.3 %

III. 모듈 구조 최적화 _ Topology

III. 모듈 구조 최적화 _ Optimization

하중 영향을 Cell Case와 Plate로 집중, Cell Stress 가 감소하도록 반복적인 해석 피드백을 적용한 케이스 스터디를 진행

형상 케이스 별

A representative-sandwich model for simultaneously coupled mechanical-electrical-thermal simulation of a lithium-ion cell under quasi-static indentation tests

KMU **KOOKMIN UNIVERSITY**

Ⅲ. 모듈 구조 최적화 _ Result

IV. 팩 구조 최적화 (Side Pole Crash)

IV. 팩 구조 최적화 _ Initial Model Information

Side Pole Crash

DEVELOP (Rib Model)

	RI	B Model Thickne	ess					
	Pack body Pack cover Cooling p							
thickness [mm]	10	10	3					
Mass [ton]	0.6348	0.0909	0.108					
pack model mass : 1.17 ton								

IV. 팩 구조 최적화 _ Setting Process (Hyperstudy)

IV. 팩 구조 최적화 _ Setting Process (Hyperstudy)

-		I	1	1	1	1	1	DU			200	sing place
	Active	Label	Varname	Lower Bound	Nominal	Upper Bound			Value	Γ		Value
	1 🔽	body_thick	body_thick	5.000000	10.000000 🔻	10.000000	Discrete	1	5.000000		1	1 0000000
	2 🔽	cover_thick	cover_thick	5.000000	10.000000 🔻	10.000000	Discrete	-	7.5000000	-	'	1.0000000
	3 🔽	coolingplate_thick	coolingplate_thick	1.0000000	3.0000000 🔻	3.0000000	Discrete	2	7.500000	-	2	2.000000
					1	1		3	10.000000		3	3.0000000

IV. 팩 구조 최적화 _ Setting Process (Hyperstudy)

Test Model Run Test Virite © Execute Extract Image: All i

		-	
		-	
		-	
_			
	ж.		•
		_	
		_	

0

Response & Constraints & Goal Setting

		Label	Varname	File	Tool		Value
1	~	N163286_Y	N163286_Y		> •		(0,0000000
2	<	N301860_Y	N301860_Y		> -		(0,0000000
3	1	N163286_X	N163286_X		> -		(0,0000000
4	<	N302367_X	N302367_X		> -		(0,0000000
5	 Image: A start of the start of	N163297_X	N163297_X		> -		(0,0000000
6	<	N302861_X	N302861_X		> -		(0,0000000
7	1	N163305_X	N163305_X		> -		(0,0000000
8	1	N302757_X	N302757_X		> •		(0,0000000
9	 Image: A start of the start of	E44582	E44582		> -		(0,0000000
10	<	E41944	E41944		> -		(0,0000000
11	 Image: A start of the start of	mass_2	mass_2		> -		(0.6347648)
12	~	mass_3	mass_3		> -		(0,0909285)
13	1	mass_4	mass_4		> -		(0.1077472)
14	<	mass_5	mass_5		> -		(0,1274525.)
15	 Image: A start of the start of	mass_6	mass_6		> -		(0,2090189)
16	<	N163313_X	N163313_X		> -		(0,0000000
17	 Image: A start of the start of	N303460_X	N303460_X	-	> -		(0,0000000 ,
18	 Image: A start of the start of	E44597	E44597		> •		(0,0000000
19	~	E41930	E41930	1.000	> -	1	(0.0000000

🕉 Define Output Responses

		Label	Varname	Expression	Value	Soals
1	 Image: A second s	displacement_Y	min_displace_Y_G1	max(ABS(N163286_Y)-abs(N301860	2.6930351	<= 9.000000
2	 Image: A second s	displacement_X	displacement_X_G2	max(ABS(N163286_X)-abs(N302367	21.985413	<= 40.00000
3	 Image: A second s	displacement_X	displacement_X_G3	max(ABS(N163297_X)-abs(N302861	23.856651	<= 40.00000
4	 Image: A start of the start of	displacement_X	displacement_X_G4	max(ABS(N163305_X)-abs(N302757	30.202316	<= 40.00000
5	 Image: A start of the start of	module_stess_1	module_stess_1	max(E44582)	1.2822983	<= 20.000000
6	 Image: A second s	module_stess_2	module_stess_2	max(E41944)	3.0847497	<= 20.000000
7	 Image: A second s	PACK_mass	PACK_mass	max(mass_2+mass_3+mass_4+mass	1.1699119	Minimize
8	 Image: A second s	displacement_X	displacement_X_G5	max(ABS(N163313_X)-abs(N303460	42.582245	<= 50.00000
9	 Image: A second s	module_stess_3	module_stess_3	max(E44597)	0.5791573	<= 20.000000
10	<	module_stess_4	module_stess_4	max(E41930)	0.9093386	<= 20.00000

Solicities Constraints - Goals

		Label	Varname	An	Туре	1	2	
1	 Image: A start of the start of	MASS	MASS	🔏 👻	🕎 Minimize 👻	N/A	N/A	Objective
2	 Image: A start of the start of	displacement_Y	displacement_Y	🔏 🔻 🔻	📕 Constraint 🔹	<= ▼	9.0000000	Constraints
3	 Image: A start of the start of	dispalcement_X	dispalcement_X	🔏 🔻 🔻	📕 Constraint 🔹	<= ▼	40.000000	Constraints
4	 Image: A second s	dispalcement_X	dispalcement_X	🔏 👻	📕 Constraint 🔹	<= ▼	40.000000	Constraints
5	 Image: A start of the start of	dispalcement_X	dispalcement_X	🔏 🔻 🔻	📕 Constraint 🔹	<= ▼	40.000000	Constraints
6	<	E44582	stress_1	🔏 🔻 🔻	📕 Constraint 🔹	<= ▼	20.000000	Constraints
7	<	E41944	stress_2	🔏 🔻 🔻	Constraint 🗸 🗸	<= ▼	20.000000	Constraints
8	<	dispalcement_X	dispalcement_X	% x ▼	Constraint 🗸 🗸	<= ▼	50.000000	Constraints
9	<	E44597	stress_3	🔏 🗸 🔻	Constraint 🗸 🗸	<= ▼	20.000000	Constraints
10	 Image: A start of the start of	E41930	stress_4	% x ▼	Constraint 🗸 🗸	<= ▼	20.000000	Constraints

IV. 팩 구조 최적화 _ Optimization 1

ų

Optimization

✓ Global Response Search Method

	Value	
Number of Evaluations	27	
On Failed Evaluation	Ignore failed evaluations	•

Optimization 1 Result								
	Initial Thickness							
Pack body	10	10						
Pack cover	10	5						
Cooling plate	3	2						

Pack mass							
Initial Optimization							
1.17 ton	1.0885 ton						
6.97 % ↓							

					Discret	e Varia	ables	LOWEF	R	UPPER
	1 차	최적	화 진혁	행 -		Pack	body	5		10
						Pack	cover	5		10
	Evaluation D	Data				Cooling	g plate	1		3
	"∐+ bod…ick	"]+ cov…ick	"∐+ coo…ick	⊯ MASS	∠ E44582	∠ E41944	∠ E44597	⊿ E41930]	
1	10.000000	10.000000	3.0000000	1.1699119	Feasible	Feasible	Feasible	Feasible		
2	5.0000000	5.0000000	1.0000000	0.7352338	Feasible	Feasible	Violated	Violated	-	
3	7.5000000	10.000000	1.0000000	0.9393893	Feasible	Feasible	Violated	Violated		
4	10.000000	5.0000000	2.0000000	1.0885319	Feasible	Feasible	Feasible	Feasible		1차 최적화
5	5.0000000	7.5000000	3.0000000	0.8297974	Feasible	Feasible	Violated	Violated	-	
6	10.000000	7.5000000	1.0000000	1.0753483	Feasible	Feasible	Violated	Violated		
7	7.5000000	5.000000	3.0000000	0.9657564	Feasible	Feasible	Violated	Violated		
8	7.5000000	7.5000000	2.0000000	0.9525729	Feasible	Feasible	Violated	Violated		
9	5.0000000	10.000000	2.000000	0.8166138	Feasible	Feasible	Violated	Violated		
10	7.5000000	5.000000	2.000000	0.9298407	Feasible	Feasible	Violated	Violated		
11	10.000000	5.000000	1.0000000	1.0526162	Feasible	Feasible	Violated	Violated		
12	10.000000	7.5000000	2.0000000	1.1112641	Feasible	Feasible	Feasible	Feasible		
13	10.000000	7.5000000	3.0000000	1.1471798	Feasible	Feasible	Feasible	Feasible		
14	10.000000	10.000000	2.0000000	1.1339962	Feasible	Feasible	Feasible	Feasible		
15	7.5000000	7.5000000	1.0000000	0.9166571	Feasible	Feasible	Violated	Violated		
16	10.000000	5.0000000	3.0000000	1.1244477	Feasible	Feasible	Feasible	Feasible		
17	7.5000000	5.0000000	1.0000000	0.8939250	Feasible	Feasible	Violated	Violated		
18	5.0000000	10.000000	3.0000000	0.8525295	Feasible	Feasible	Violated	Violated		
19	7.5000000	7.5000000	3.0000000	0.9884886	Feasible	Feasible	Violated	Feasible		
20	5.0000000	5.0000000	2.0000000	0.7711495	Feasible	Feasible	Violated	Violated		
21	5.0000000	10.000000	1.0000000	0.7806980	Feasible	Feasible	Violated	Violated	1	
22	5.0000000	7.5000000	2.0000000	0.7938816	Feasible	Feasible	Violated	Violated		
23	5.0000000	7.5000000	1.0000000	0.7579659	Feasible	Feasible	Violated	Violated]	
24	10.000000	10.000000	1.0000000	1.0980805	Feasible	Feasible	Violated	Violated	1	
25	5.0000000	5.0000000	3.0000000	0.8070652	Feasible	Feasible	Violated	Violated		
26	7.5000000	10.000000	2.0000000	0.9753050	Feasible	Feasible	Violated	Violated		
27	7.5000000	10.000000	3.0000000	1.0112207	Feasible	Feasible	Violated	Violated]	

IV. 팩 구조 최적화 _ Optimization 2

4

Optimization

V Global Response Search Method

	Value			
Number of Evaluations	50			
On Failed Evaluation	Ignore failed evaluations 🔻			

Optimization 2 Result				
	Initial	Thickness		
Pack body	10	9.06		
Pack cover	10	2.57		
Cooling plate	3	2.43		

Pack mass				
Initial	Optimization			
1.17 ton	1.022 ton			
12.65 % ↓				

					Continuou	s Varia	ables	LOWER		UPPER
	2 차	최적	화 진형	행		Pack	body	8		10
설계 변수 boundary 조정				Pack	cover	2.5		6		
Evaluation Data						Coolin	g plate	1		2.5
	"]+ bod…ick	"]+ cov…ick	"∐+ coo…ick	₩ MASS	🔟 E44582	∐ E41944	∐ E44597	∐ E41930		
4	10.000000	5.0000000	2.0000000	1.0885319	Feasible	Feasible	Feasible	Feasible	⇒	1차 최적화
53	9.1721075	5.3135909	1.6987288	1.0278905	Feasible	Feasible	Feasible	Violated		
54	9.7388800	3.9828800	1.3494400	1.0394081	Feasible	Feasible	Feasible	Feasible		
55	9.9948800	4.0388800	2.4774401	1.0964076	Feasible	Feasible	Feasible	Feasible		
56	9.2305256	5.1048260	1.5873910	1.0258389	Feasible	Feasible	Violated	Violated		
57	9.2730434	5.1352861	1.4979222	1.0255092	Feasible	Feasible	Violated	Violated		
58	9.2201806	5.1311372	1.5989372	1.0258361	Feasible	Feasible	Feasible	Feasible		
59	9.7651200	5.7211200	2.4025600	1.0948455	Feasible	Feasible	Feasible	Feasible		
60	8.4883200	3.6043200	1.4641600	0.9605580	Feasible	Feasible	Violated	Violated		
61	9.3011460	5.0526385	1.5420209	1.0280318	Feasible	Feasible	Violated	Violated		
62	9.1320491	5.1511813	1.6010950	1.0203050	Feasible	Feasible	Violated	Violated		
63	9.3060235	5.0392816	1.5364128	1.0285756	Feasible	Feasible	Feasible	Feasible		
64	9.1475200	3.2235200	2.4937600	1.0359904	Feasible	Feasible	Violated	Feasible		
65	9.4355200	5.9115200	1.1377600	1.0303721	Feasible	Feasible	Violated	Violated		
66	9.2297720	5.1866637	1.6291914	1.0280939	Feasible	Feasible	Violated	Violated		
67	9.1702270	5.1557049	1.6040090	1.0229350	Feasible	Feasible	Feasible	Violated		
68	9.2330482	5.1914478	1.6264155	1.0280939	Feasible	Feasible	Violated	Violated		
69	8.0857600	2.9737600	1.0028800	0.9129176	Feasible	Feasible	Violated	Violated		
70	9.4617600	4.1497600	2.1908800	1.0533497	Feasible	Feasible	Feasible	Feasible		
71	9.2012259	5.0647417	1.5727080	1.0228526	Feasible	Feasible	Feasible	Violated		
72	9.1312722	2.5001086	2.2999790	1.0213500	Feasible	Feasible	Feasible	Violated		
73	9.2028840	5.0679584	1.5714082	1.0229435	Feasible	Feasible	Feasible	Violated		
74	8.6329600	3.8809600	2.4764800	1.0086247	Feasible	Feasible	Feasible	Violated		
75	8.7513600	5.9193600	2.4356800	1.0333547	Feasible	Feasible	Feasible	Feasible	ſ	2차 친저하
76	9.2012259	5.0937417	1.5762068	1.0234845	Feasible	Feasible	Violated	Feasible		해석 케이스ㆍ77 회
77	9.0589122	2.5721925	2.4318813	1.0222122	Feasible	Feasible	Feasible	Feasible	\Rightarrow	lteration : 17 회

Ⅳ. 팩 구조 최적화 _ Result

V. 최적화 결론

V. 최적화 결론

Module	Module OPT + Pack OPT				
	INITIAL	FINAL OPT			
PACK Total Mass [ton]	1.2333	1.039			
	15.75 % ↓				
Cell Max Stress [MPa]	215	62.3			
	71 % ↓				

감사합니다

